{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T06:03:57Z","timestamp":1740117837168,"version":"3.37.3"},"reference-count":57,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2017,2,1]],"date-time":"2017-02-01T00:00:00Z","timestamp":1485907200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2017,12,21]],"date-time":"2017-12-21T00:00:00Z","timestamp":1513814400000},"content-version":"am","delay-in-days":323,"URL":"http:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"},{"start":{"date-parts":[[2017,2,1]],"date-time":"2017-02-01T00:00:00Z","timestamp":1485907200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2017,2,1]],"date-time":"2017-02-01T00:00:00Z","timestamp":1485907200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2017,2,1]],"date-time":"2017-02-01T00:00:00Z","timestamp":1485907200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2017,2,1]],"date-time":"2017-02-01T00:00:00Z","timestamp":1485907200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2017,2,1]],"date-time":"2017-02-01T00:00:00Z","timestamp":1485907200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Science Foundation of China","doi-asserted-by":"publisher","award":["61622301","61533002","61225016"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100002858","name":"China Postdoctoral Science Foundation","doi-asserted-by":"publisher","award":["2014M550017"],"id":[{"id":"10.13039\/501100002858","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100002338","name":"Ministry of Chinese Education","doi-asserted-by":"publisher","award":["20131103110016"],"id":[{"id":"10.13039\/501100002338","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100002888","name":"Beijing Municipal Education Commission Foundation","doi-asserted-by":"publisher","award":["km201410005001","KZ201410005002"],"id":[{"id":"10.13039\/501100002888","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2017,2]]},"DOI":"10.1016\/j.neucom.2016.11.010","type":"journal-article","created":{"date-parts":[[2016,11,16]],"date-time":"2016-11-16T13:06:12Z","timestamp":1479301572000},"page":"80-91","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":23,"special_numbering":"C","title":["Self-organization of a recurrent RBF neural network using an information-oriented algorithm"],"prefix":"10.1016","volume":"225","author":[{"given":"Hong-Gui","family":"Han","sequence":"first","affiliation":[]},{"given":"Ya-Nan","family":"Guo","sequence":"additional","affiliation":[]},{"given":"Jun-Fei","family":"Qiao","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"1","key":"10.1016\/j.neucom.2016.11.010_bib1","doi-asserted-by":"crossref","first-page":"27","DOI":"10.1016\/j.neucom.2014.11.022","article-title":"Biological context of Hebb learning in artificial neural networks, a review","volume":"152","author":"Kuriscak","year":"2015","journal-title":"Neurocomputing"},{"issue":"6245","key":"10.1016\/j.neucom.2016.11.010_bib2","doi-asserted-by":"crossref","first-page":"255","DOI":"10.1126\/science.aaa8415","article-title":"Machine learning: trends, perspectives, and prospects","volume":"349","author":"Jordanl","year":"2015","journal-title":"Science"},{"issue":"1","key":"10.1016\/j.neucom.2016.11.010_bib3","doi-asserted-by":"crossref","first-page":"231","DOI":"10.1016\/j.neucom.2015.01.012","article-title":"A neural network based linear ensemble framework for time series forecasting","volume":"157","author":"Adhikari","year":"2015","journal-title":"Neurocomputing"},{"issue":"3","key":"10.1016\/j.neucom.2016.11.010_bib4","doi-asserted-by":"crossref","first-page":"996","DOI":"10.1016\/j.neucom.2014.03.085","article-title":"A calibration method for enhancing robot accuracy through integration of an extended Kalman filter algorithm and an artificial neural network","volume":"151","author":"Nguyen","year":"2015","journal-title":"Neurocomputing"},{"issue":"2","key":"10.1016\/j.neucom.2016.11.010_bib5","doi-asserted-by":"crossref","first-page":"208","DOI":"10.1109\/TNNLS.2014.2333664","article-title":"Kernel association for classification and prediction: A survey","volume":"26","author":"Motai","year":"2015","journal-title":"IEEE Trans.\u00a0Neural Netw.Learn. Syst."},{"issue":"3","key":"10.1016\/j.neucom.2016.11.010_bib6","doi-asserted-by":"crossref","first-page":"30","DOI":"10.1016\/j.neucom.2010.08.012","article-title":"A world survey of artificial brain projects, Part II: Biologically inspired cognitive architectures","volume":"74","author":"Goertzel","year":"2010","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2016.11.010_bib7","doi-asserted-by":"crossref","first-page":"200","DOI":"10.1016\/j.neucom.2015.12.064","article-title":"Research on dynamic modeling and simulation of axial-flow pumping system based on RBF neural network","volume":"186","author":"Wu","year":"2016","journal-title":"Neurocomputing"},{"issue":"1","key":"10.1016\/j.neucom.2016.11.010_bib8","doi-asserted-by":"crossref","first-page":"349","DOI":"10.1016\/j.neucom.2014.05.082","article-title":"Efficient incremental construction of RBF networks using quasi-gradient method","volume":"150","author":"Reiner","year":"2015","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2016.11.010_bib9","doi-asserted-by":"crossref","first-page":"142","DOI":"10.1016\/j.neunet.2013.11.011","article-title":"A linear recurrent kernel online learning algorithm with sparse updates","volume":"50","author":"Fan","year":"2014","journal-title":"Neural Netw."},{"issue":"3","key":"10.1016\/j.neucom.2016.11.010_bib10","doi-asserted-by":"crossref","first-page":"2121","DOI":"10.1016\/j.neucom.2015.10.059","article-title":"Adaptive neural network tracking control for a class of switched strict-feedback nonlinear systems with input delay","volume":"173","author":"Niu","year":"2016","journal-title":"Neurocomputing"},{"issue":"2","key":"10.1016\/j.neucom.2016.11.010_bib11","doi-asserted-by":"crossref","first-page":"342","DOI":"10.1109\/TNNLS.2011.2178559","article-title":"Adaptive computation algorithm for RBF neural network","volume":"23","author":"Han","year":"2012","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"7","key":"10.1016\/j.neucom.2016.11.010_bib12","doi-asserted-by":"crossref","first-page":"1229","DOI":"10.1109\/TNNLS.2014.2317880","article-title":"A comprehensive review of stability analysis of continuous-time recurrent neural networks","volume":"25","author":"Zhang","year":"2014","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"1","key":"10.1016\/j.neucom.2016.11.010_bib13","doi-asserted-by":"crossref","first-page":"128","DOI":"10.1016\/j.neucom.2014.12.040","article-title":"Improved stability criteria for recurrent neural networks with interval time-varying delays via new Lyapunov functionals","volume":"155","author":"Lee","year":"2015","journal-title":"Neurocomputing"},{"issue":"1","key":"10.1016\/j.neucom.2016.11.010_bib14","doi-asserted-by":"crossref","first-page":"477","DOI":"10.1016\/j.asoc.2015.09.051","article-title":"A soft computing method to predict sludge volume index based on a recurrent self-organizing neural network","volume":"38","author":"Han","year":"2016","journal-title":"Appl. Soft Comput."},{"issue":"1","key":"10.1016\/j.neucom.2016.11.010_bib15","doi-asserted-by":"crossref","first-page":"238","DOI":"10.1016\/j.neucom.2014.02.007","article-title":"Recurrent neural network for approximate nonnegative matrix factorization","volume":"138","author":"Costantini","year":"2014","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2016.11.010_bib16","doi-asserted-by":"crossref","first-page":"34","DOI":"10.1016\/j.neucom.2016.02.008","article-title":"Mixture framework for incremental nonparametric regression with topology learning neural networks","volume":"194","author":"Xiang","year":"2016","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2016.11.010_bib17","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1016\/j.neunet.2014.05.024","article-title":"Self-organization of a recurrent network under ongoing synaptic plasticity","volume":"62","author":"Aoki","year":"2015","journal-title":"Neural Netw."},{"issue":"6","key":"10.1016\/j.neucom.2016.11.010_bib18","doi-asserted-by":"crossref","first-page":"2284","DOI":"10.1109\/TSMCB.2004.834428","article-title":"An efficient sequential learning algorithm for growing and pruning RBF (GAP-RBF) networks","volume":"34","author":"Huang","year":"2004","journal-title":"IEEE Trans. Syst. Man cybern. -Part B: Cybern."},{"issue":"1","key":"10.1016\/j.neucom.2016.11.010_bib19","doi-asserted-by":"crossref","first-page":"57","DOI":"10.1109\/TNN.2004.836241","article-title":"A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation","volume":"16","author":"Huang","year":"2005","journal-title":"IEEE Trans. Neural Netw."},{"key":"10.1016\/j.neucom.2016.11.010_bib20","doi-asserted-by":"crossref","first-page":"168","DOI":"10.1016\/j.neucom.2015.04.102","article-title":"A semi-supervised online sequential extreme learning machine method","volume":"174","author":"Jia","year":"2016","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2016.11.010_bib21","doi-asserted-by":"crossref","first-page":"210","DOI":"10.1016\/j.neunet.2013.06.004","article-title":"A growing and pruning sequential learning algorithm of hyper basis function neural network for function approximation","volume":"46","author":"Vukovi","year":"2013","journal-title":"Neural Netw."},{"issue":"3","key":"10.1016\/j.neucom.2016.11.010_bib22","doi-asserted-by":"crossref","first-page":"4717","DOI":"10.1016\/j.eswa.2008.06.017","article-title":"Noisy time series prediction using M-estimator based robust radial basis function neural networks with growing and pruning techniques","volume":"36","author":"Lee","year":"2009","journal-title":"Expert Syst. Appl."},{"issue":"3","key":"10.1016\/j.neucom.2016.11.010_bib23","doi-asserted-by":"crossref","first-page":"1951","DOI":"10.1016\/j.neucom.2015.09.067","article-title":"A fast training algorithm for extreme learning machine based on matrix decomposition","volume":"173","author":"Li","year":"2016","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2016.11.010_bib24","doi-asserted-by":"crossref","first-page":"405","DOI":"10.1016\/j.neucom.2015.03.104","article-title":"Gaussian-PSO with fuzzy reasoning based on structural learning for training a neural network","volume":"172","author":"Melo","year":"2016","journal-title":"Neurocomputing"},{"issue":"8","key":"10.1016\/j.neucom.2016.11.010_bib25","first-page":"3160","article-title":"Application of an adaptive differential evolution algorithm with multiple trial vectors to artificial neural network training","volume":"58","author":"Slowik","year":"2011","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"1","key":"10.1016\/j.neucom.2016.11.010_bib26","doi-asserted-by":"crossref","first-page":"136","DOI":"10.1016\/j.neucom.2012.10.043","article-title":"Evolving RBF neural networks for rainfall prediction using hybrid particle swarm optimization and genetic algorithm","volume":"148","author":"Wu","year":"2015","journal-title":"Neurocomputing"},{"issue":"3","key":"10.1016\/j.neucom.2016.11.010_bib27","doi-asserted-by":"crossref","first-page":"935","DOI":"10.1109\/TSMCB.2012.2218804","article-title":"Online modeling with tunable RBF network","volume":"43","author":"Chen","year":"2013","journal-title":"IEEE Trans. Cybern."},{"issue":"19","key":"10.1016\/j.neucom.2016.11.010_bib28","doi-asserted-by":"crossref","first-page":"2552","DOI":"10.1016\/j.fss.2010.04.006","article-title":"A recurrent self-evolving fuzzy neural network with local feedbacks and its application to dynamic system processing","volume":"161","author":"Juang","year":"2010","journal-title":"Fuzzy Sets Syst."},{"issue":"2","key":"10.1016\/j.neucom.2016.11.010_bib29","doi-asserted-by":"crossref","first-page":"310","DOI":"10.1109\/TNNLS.2012.2231436","article-title":"Identification and prediction of dynamic systems using an interactively recurrent self-evolving fuzzy neural network","volume":"24","author":"Lin","year":"2013","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"16","key":"10.1016\/j.neucom.2016.11.010_bib30","doi-asserted-by":"crossref","first-page":"3553","DOI":"10.1016\/j.neucom.2007.08.028","article-title":"Automatic generation of the optimum threshold for parameter weighted pruning in multiple heterogeneous output neural networks","volume":"71","author":"Luchetta","year":"2008","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2016.11.010_bib31","doi-asserted-by":"crossref","first-page":"13","DOI":"10.1016\/S0925-2312(02)00600-8","article-title":"Self-organized topological structures in neural networks for the visual cortex of the brain","volume":"51","author":"Garliauskas","year":"2003","journal-title":"Neurocomputing"},{"issue":"20","key":"10.1016\/j.neucom.2016.11.010_bib32","doi-asserted-by":"crossref","first-page":"526","DOI":"10.1016\/j.neucom.2014.04.017","article-title":"An online supervised learning method for spiking neural networks with adaptive structure","volume":"144","author":"Wang","year":"2014","journal-title":"Neurocomputing"},{"doi-asserted-by":"crossref","unstructured":"X. Meng, J.F. Qiao, H.G. Han, An ART-like algorithm for constructing RBF neural networks, in: Proceedings of the IEEE International Joint Conference on Neural Networks, 2015, pp. 1\u20137.","key":"10.1016\/j.neucom.2016.11.010_bib33","DOI":"10.1109\/IJCNN.2015.7280488"},{"issue":"6","key":"10.1016\/j.neucom.2016.11.010_bib34","first-page":"2938","article-title":"The modified differential evolution and the RBF (MDE-RBF) neural network for time series prediction","volume":"9","author":"Dhahri","year":"2006","journal-title":"Neural Netw."},{"issue":"4","key":"10.1016\/j.neucom.2016.11.010_bib35","doi-asserted-by":"crossref","first-page":"267","DOI":"10.1016\/S0925-2312(01)00338-1","article-title":"Time series analysis using normalized PG-RBF network with regression weights","volume":"42","author":"Rojas","year":"2002","journal-title":"Neurocomputing"},{"issue":"2","key":"10.1016\/j.neucom.2016.11.010_bib36","doi-asserted-by":"crossref","first-page":"155","DOI":"10.1109\/91.995118","article-title":"recurrent fuzzy network for dynamic systems processing by neural network and genetic algorithms","volume":"10","author":"Juang","year":"2002","journal-title":"IEEE Trans. Fuzzy Syst."},{"key":"10.1016\/j.neucom.2016.11.010_bib37","doi-asserted-by":"crossref","first-page":"608","DOI":"10.1016\/j.neucom.2014.08.014","article-title":"A recurrent neural network for optimal real-time price in smart grid","volume":"149","author":"He","year":"2015","journal-title":"Neurocomputing"},{"issue":"13","key":"10.1016\/j.neucom.2016.11.010_bib38","doi-asserted-by":"crossref","first-page":"2624","DOI":"10.1016\/j.neucom.2010.05.012","article-title":"Constructive training of recurrent neural networks using hybrid optimization","volume":"73","author":"Subrahmanya","year":"2010","journal-title":"Neurocomputing"},{"issue":"1","key":"10.1016\/j.neucom.2016.11.010_bib39","doi-asserted-by":"crossref","first-page":"170","DOI":"10.1016\/j.neucom.2014.01.015","article-title":"Adaptive backstepping Elman-based neural control for unknown nonlinear systems","volume":"136","author":"Hsu","year":"2014","journal-title":"Neurocomputing"},{"issue":"1","key":"10.1016\/j.neucom.2016.11.010_bib40","first-page":"1","article-title":"Network self-organization explains the statistics and dynamics of synaptic connection strengths in cortex","volume":"9","author":"Zheng","year":"2013","journal-title":"Comput. Biol."},{"issue":"1","key":"10.1016\/j.neucom.2016.11.010_bib41","doi-asserted-by":"crossref","first-page":"25","DOI":"10.1142\/S0129065703001376","article-title":"A local training-pruning approach for recurrent neural networks","volume":"13","author":"Leung","year":"2003","journal-title":"Int. J. Neural Syst."},{"issue":"2","key":"10.1016\/j.neucom.2016.11.010_bib42","doi-asserted-by":"crossref","first-page":"262","DOI":"10.1109\/TNN.2009.2036174","article-title":"Recursive Bayesian recurrent neural networks for time-series modeling","volume":"21","author":"Mirikitani","year":"2010","journal-title":"IEEE Trans. Neural Netw."},{"issue":"16","key":"10.1016\/j.neucom.2016.11.010_bib43","doi-asserted-by":"crossref","first-page":"3447","DOI":"10.1016\/j.neucom.2007.10.014","article-title":"Recurrent fuzzy-neural approach for nonlinear control using dynamic structure learning scheme","volume":"71","author":"Hsu","year":"2008","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2016.11.010_bib44","doi-asserted-by":"crossref","first-page":"509","DOI":"10.1016\/j.asoc.2014.02.027","article-title":"Adaptive hybrid control system using a recurrent RBFN-based self-evolving fuzzy-neural-network for PMSM servo drives","volume":"21","author":"El-Sousy","year":"2014","journal-title":"Appl.\u00a0Soft Comput."},{"key":"10.1016\/j.neucom.2016.11.010_bib45","doi-asserted-by":"crossref","first-page":"547","DOI":"10.1016\/j.neucom.2013.04.016","article-title":"A hybrid optimization-based recurrent neural network for real-time data prediction","volume":"120","author":"Wang","year":"2013","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2016.11.010_bib46","doi-asserted-by":"crossref","first-page":"39","DOI":"10.1016\/j.neunet.2014.08.011","article-title":"Neural coordination can be enhanced by occasional interruption of normal firing patterns: A self-optimizing spiking neural network model","volume":"62","author":"Woodward","year":"2015","journal-title":"Neural Netw."},{"issue":"3","key":"10.1016\/j.neucom.2016.11.010_bib47","doi-asserted-by":"crossref","first-page":"1348","DOI":"10.1016\/j.neucom.2015.08.088","article-title":"Impulsive controller design for exponential synchronization of delayed stochastic memristor-based recurrent neural networks","volume":"173","author":"Chandrasekar","year":"2016","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2016.11.010_bib48","first-page":"593","article-title":"Adaptive nonlinear system identification with echo state networks","author":"Jaeger","year":"2002","journal-title":"Adv. Neural Inf. Process. Process"},{"issue":"4","key":"10.1016\/j.neucom.2016.11.010_bib49","doi-asserted-by":"crossref","first-page":"349","DOI":"10.1109\/91.868943","article-title":"Identification and control of dynamic systems using recurrent fuzzy neural networks","volume":"8","author":"Lee","year":"2000","journal-title":"IEEE Trans. Fuzzy Syst."},{"issue":"5","key":"10.1016\/j.neucom.2016.11.010_bib50","doi-asserted-by":"crossref","first-page":"2144","DOI":"10.1109\/TSMCB.2004.833330","article-title":"Prediction and identification using wavelet-based recurrent fuzzy neural networks","volume":"34","author":"Lin","year":"2004","journal-title":"IEEE Trans. Syst. Man Cybern."},{"unstructured":"E.Y. Cheu, H.C .Quek, S.K. Ng, TNFIS: Tree-based neural fuzzy inference system, in: Proceedings of the IEEE International Joint Conference on Neural Networks, 2008 pp. 398\u2013405.","key":"10.1016\/j.neucom.2016.11.010_bib51"},{"issue":"9","key":"10.1016\/j.neucom.2016.11.010_bib52","doi-asserted-by":"crossref","first-page":"1301","DOI":"10.1016\/S0893-6080(99)00067-2","article-title":"HyFIS: adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems","volume":"12","author":"Kim","year":"1999","journal-title":"Neural Netw."},{"issue":"2","key":"10.1016\/j.neucom.2016.11.010_bib53","doi-asserted-by":"crossref","first-page":"461","DOI":"10.1162\/neco.1997.9.2.461","article-title":"A sequential learning scheme for function approximation using minimal radial basis function neural networks","volume":"9","author":"Li","year":"1997","journal-title":"Neural Comput."},{"issue":"4","key":"10.1016\/j.neucom.2016.11.010_bib54","doi-asserted-by":"crossref","first-page":"519","DOI":"10.1016\/j.neucom.2007.07.018","article-title":"Soft-computing techniques and ARMA model for time series prediction","volume":"71","author":"Rojasa","year":"2008","journal-title":"Neurocomputing"},{"issue":"6","key":"10.1016\/j.neucom.2016.11.010_bib55","doi-asserted-by":"crossref","first-page":"449","DOI":"10.1016\/j.neucom.2005.02.006","article-title":"Time-series prediction using a local linear wavelet neural network","volume":"69","author":"Chen","year":"2006","journal-title":"Neurocomputing"},{"issue":"4","key":"10.1016\/j.neucom.2016.11.010_bib56","doi-asserted-by":"crossref","first-page":"578","DOI":"10.1109\/91.940970","article-title":"A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks","volume":"9","author":"Wu","year":"2001","journal-title":"IEEE Trans. Fuzzy Syst."},{"issue":"10","key":"10.1016\/j.neucom.2016.11.010_bib57","doi-asserted-by":"crossref","first-page":"1599","DOI":"10.1109\/TNN.2010.2066285","article-title":"Fuzzy wavelet neural network models for prediction and identification of dynamical systems","volume":"21","author":"Yilmaz","year":"2010","journal-title":"IEEE Trans. Neural Netw."}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S092523121631339X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S092523121631339X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,4,7]],"date-time":"2024-04-07T05:02:24Z","timestamp":1712466144000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S092523121631339X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,2]]},"references-count":57,"alternative-id":["S092523121631339X"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2016.11.010","relation":{},"ISSN":["0925-2312"],"issn-type":[{"type":"print","value":"0925-2312"}],"subject":[],"published":{"date-parts":[[2017,2]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Self-organization of a recurrent RBF neural network using an information-oriented algorithm","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2016.11.010","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2016 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}