{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,7]],"date-time":"2024-07-07T23:50:06Z","timestamp":1720396206601},"reference-count":41,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2017,10,1]],"date-time":"2017-10-01T00:00:00Z","timestamp":1506816000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"NSFC","doi-asserted-by":"crossref","award":["U1201258"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"crossref"}]},{"DOI":"10.13039\/501100001809","name":"Natural Science Foundation of China","doi-asserted-by":"crossref","award":["61573219, 61671274"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"crossref"}]},{"name":"Projects of Medical and Health Technology Development Program in Shandong Province","award":["2014ws0109"]},{"DOI":"10.13039\/501100007129","name":"Natural Science Foundation of Shandong Province","doi-asserted-by":"crossref","award":["ZR2014HM065"],"id":[{"id":"10.13039\/501100007129","id-type":"DOI","asserted-by":"crossref"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2017,10]]},"DOI":"10.1016\/j.neucom.2016.06.082","type":"journal-article","created":{"date-parts":[[2017,2,9]],"date-time":"2017-02-09T10:15:27Z","timestamp":1486635327000},"page":"210-218","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":11,"special_numbering":"C","title":["Robust texture analysis of multi-modal images using Local Structure Preserving Ranklet and multi-task learning for breast tumor diagnosis"],"prefix":"10.1016","volume":"259","author":[{"given":"Xiaoming","family":"Xi","sequence":"first","affiliation":[]},{"given":"Hui","family":"Xu","sequence":"additional","affiliation":[]},{"given":"Hao","family":"Shi","sequence":"additional","affiliation":[]},{"given":"Chunyun","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Hong Yu","family":"Ding","sequence":"additional","affiliation":[]},{"given":"Guang","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Yuchun","family":"Tang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8341-8792","authenticated-orcid":false,"given":"Yilong","family":"Yin","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neucom.2016.06.082_bib0001","doi-asserted-by":"crossref","first-page":"388","DOI":"10.1016\/j.neucom.2014.10.040","article-title":"A new automatic mass detection method for breast cancer with false positive reduction","volume":"152","author":"Liu","year":"2015","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2016.06.082_bib0002","doi-asserted-by":"crossref","first-page":"87","DOI":"10.1016\/j.neucom.2016.01.074","article-title":"Stacked deep polynomial network based representation learning for tumor classification with small ultrasound image dataset","volume":"194","author":"Shi","year":"2016","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2016.06.082_bib0003","doi-asserted-by":"crossref","first-page":"299","DOI":"10.1016\/j.patcog.2009.05.012","article-title":"Automated breast cancer detection and classification using ultrasound images: a survey","volume":"43","author":"Cheng","year":"2010","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.neucom.2016.06.082_bib0004","doi-asserted-by":"crossref","first-page":"123","DOI":"10.1148\/radiology.196.1.7784555","article-title":"Solid breast nodules: use of sonography to distinguish between benign and malignant lesions","volume":"196","author":"Stavros","year":"1995","journal-title":"Radiology"},{"key":"10.1016\/j.neucom.2016.06.082_bib0005","doi-asserted-by":"crossref","first-page":"1301","DOI":"10.1016\/S0301-5629(02)00620-8","article-title":"Diagnosis of breast tumors with sonographic texture analysis using wavelet transform and neural networks","volume":"28","author":"Chen","year":"2002","journal-title":"Ultrasound Med. Biol."},{"key":"10.1016\/j.neucom.2016.06.082_bib0006","doi-asserted-by":"crossref","first-page":"175","DOI":"10.1016\/j.neucom.2013.05.053","article-title":"Breast tumor detection in digital mammography based on extreme learning machine","volume":"128","author":"Wang","year":"2014","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2016.06.082_bib0007","doi-asserted-by":"crossref","first-page":"3296","DOI":"10.1016\/j.neucom.2009.02.015","article-title":"Automatic detection of breast cancers in mammograms using structured support vector machines","volume":"72","author":"Wang","year":"2009","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2016.06.082_bib0008","first-page":"39","article-title":"Computer-aided diagnosis of breast lesions in medical images","volume":"2","author":"Giger","year":"2000","journal-title":"Comput. Med."},{"key":"10.1016\/j.neucom.2016.06.082_bib0009","doi-asserted-by":"crossref","first-page":"1191","DOI":"10.1109\/TMI.2012.2230403","article-title":"Computer-aided tumor detection based on multi-scale blob detection algorithm in automated breast ultrasound images","volume":"32","author":"Moon","year":"2013","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.neucom.2016.06.082_bib0010","doi-asserted-by":"crossref","first-page":"216","DOI":"10.1016\/j.neucom.2013.09.038","article-title":"Optimized graph-based segmentation for ultrasound images","volume":"129","author":"Huang","year":"2014","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2016.06.082_bib0011","doi-asserted-by":"crossref","first-page":"1292","DOI":"10.1109\/TMI.2004.834617","article-title":"Computer-aided diagnosis of solid breast nodules: use of an artificial neural network based on multiple sonographic features","volume":"23","author":"Joo","year":"2004","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.neucom.2016.06.082_bib0012","doi-asserted-by":"crossref","first-page":"485","DOI":"10.1016\/j.patcog.2014.07.026","article-title":"Fully automatic segmentation of breast ultrasound images based on breast characteristics in space and frequency domains","volume":"48","author":"Xian","year":"2015","journal-title":"Pattern Recognition"},{"key":"10.1016\/j.neucom.2016.06.082_bib0013","doi-asserted-by":"crossref","first-page":"1737","DOI":"10.1016\/j.ultrasmedbio.2015.01.012","article-title":"A two-step segmentation method for breast ultrasound masses based on multi-resolution analysis","volume":"41","author":"Rodrigues","year":"2015","journal-title":"Ultrasound Med. Biol."},{"key":"10.1016\/j.neucom.2016.06.082_bib0014","doi-asserted-by":"crossref","first-page":"293","DOI":"10.1016\/j.ins.2014.08.021","article-title":"Automatic segmentation of breast lesions for interaction in ultrasonic computer-aided diagnosis","volume":"314","author":"Huang","year":"2015","journal-title":"Inf. Sci."},{"key":"10.1016\/j.neucom.2016.06.082_bib0015","doi-asserted-by":"crossref","first-page":"1737","DOI":"10.1016\/j.ultrasmedbio.2015.01.012","article-title":"A two-step segmentation method for breast ultrasound masses based on multi-resolution analysis","volume":"41","author":"Rodrigues","year":"2015","journal-title":"Ultrasound Med. Biol."},{"key":"10.1016\/j.neucom.2016.06.082_bib0016","doi-asserted-by":"crossref","first-page":"880","DOI":"10.1109\/TBME.2008.2008725","article-title":"Breast tumor classification of ultrasound images using a reversible round-off nonrecursive 1D discrete periodic wavelet transform","volume":"56","author":"Lee","year":"2009","journal-title":"IEEE Trans. Biomed. Eng."},{"key":"10.1016\/j.neucom.2016.06.082_bib0017","doi-asserted-by":"crossref","first-page":"164","DOI":"10.1007\/s00521-005-0019-5","article-title":"Diagnosis of breast tumors with ultrasonic texture analysis using support vector machines","volume":"15","author":"Huang","year":"2006","journal-title":"Neural Comput. Appl."},{"key":"10.1016\/j.neucom.2016.06.082_bib0018","series-title":"Proceedings of SPIE Medical Imaging 2012: Ultrasonic Imaging, Tomography, and Therapy","first-page":"83201H","article-title":"Local binary pattern texture-based classification of solid masses in ultrasound breast images","author":"Matsumoto","year":"2012"},{"key":"10.1016\/j.neucom.2016.06.082_bib0019","series-title":"Proceedings of Joint Conference on Information Sciences (JCIS-2006)","article-title":"Mass detection and classification in breast ultrasound images using fuzzy SVM","author":"Cheng","year":"2006"},{"key":"10.1016\/j.neucom.2016.06.082_bib0020","doi-asserted-by":"crossref","first-page":"379","DOI":"10.1118\/1.2401039","article-title":"Complexity curve and grey level co-occurrence matrix in the texture evaluation of breast tumor on ultrasound images","volume":"34","author":"Alvarenga","year":"2007","journal-title":"Med. Phys."},{"key":"10.1016\/j.neucom.2016.06.082_bib0021","doi-asserted-by":"crossref","first-page":"1243","DOI":"10.1016\/S0301-5629(00)00274-X","article-title":"Relevance of sonographic B-mode criteria and computer-aided ultrasonic tissue characterization in differential\/diagnosis of solid breast masses","volume":"26","author":"Huber","year":"2000","journal-title":"Ultrasound Med. Biol."},{"key":"10.1016\/j.neucom.2016.06.082_bib0022","doi-asserted-by":"crossref","first-page":"1421","DOI":"10.1016\/S0301-5629(00)00302-1","article-title":"Computerized ultrasound B-scan characterization of breast nodules","volume":"26","author":"Lefebvre","year":"2000","journal-title":"Ultrasound Med. Biol."},{"key":"10.1016\/j.neucom.2016.06.082_bib0023","doi-asserted-by":"crossref","first-page":"539","DOI":"10.1016\/j.ultrasmedbio.2011.01.006","article-title":"Computer-aided diagnosis for the classification of breast masses in automated whole breast ultrasound images","volume":"37","author":"Moon","year":"2011","journal-title":"Ultrasound Med. Biol."},{"key":"10.1016\/j.neucom.2016.06.082_bib0024","doi-asserted-by":"crossref","first-page":"903","DOI":"10.1016\/S0301-5629(02)00541-0","article-title":"Retrieval technique for the diagnosis of solid breast tumors on sonogram","volume":"28","author":"Kuo","year":"2002","journal-title":"Ultrasound Med. Biol."},{"key":"10.1016\/j.neucom.2016.06.082_bib0025","doi-asserted-by":"crossref","first-page":"1889","DOI":"10.1109\/TMI.2012.2206398","article-title":"Analysis of co-occurrence texture statistics as a function of gray-level quantization for classifying breast ultrasound","volume":"31","author":"G\u00f3mez","year":"2012","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.neucom.2016.06.082_bib0026","doi-asserted-by":"crossref","first-page":"1301","DOI":"10.1016\/S0301-5629(02)00620-8","article-title":"Diagnosis of breast tumors with sonographic texture analysis using wavelet transform and neural networks","volume":"28","author":"Chen","year":"2002","journal-title":"Ultrasound Med. Biol."},{"key":"10.1016\/j.neucom.2016.06.082_bib0027","doi-asserted-by":"crossref","first-page":"840","DOI":"10.1118\/1.2174134","article-title":"Detection of breast lesion regions in ultrasound images using wavelets and order statistics","volume":"33","author":"Mogatadakala","year":"2006","journal-title":"Med. Phys."},{"key":"10.1016\/j.neucom.2016.06.082_bib0028","first-page":"1","article-title":"Robust phase-based texture descriptor for classification of breast ultrasound images","volume":"14","author":"Lingyun","year":"2015","journal-title":"BioMed. Eng. Online"},{"key":"10.1016\/j.neucom.2016.06.082_bib0029","doi-asserted-by":"crossref","first-page":"588","DOI":"10.1016\/j.ultrasmedbio.2014.09.003","article-title":"Quantification of elastic heterogeneity using contourlet-based texture analysis in shear-wave elastography for breast tumor classification","volume":"41","author":"Zhang","year":"2015","journal-title":"Ultrasound Med. Biol."},{"key":"10.1016\/j.neucom.2016.06.082_bib0030","doi-asserted-by":"crossref","unstructured":"S. Zhou, J. Shi, J. Zhu, Y. Cai, R. Wang, Shearlet-based texture feature extraction for classification of breast tumor in ultrasound image, Biomed. Signal Process. Control, 8 (2013), 688\u2013696.","DOI":"10.1016\/j.bspc.2013.06.011"},{"key":"10.1016\/j.neucom.2016.06.082_bib0031","doi-asserted-by":"crossref","first-page":"598","DOI":"10.1109\/TMI.2009.2022630","article-title":"Discrimination of breast tumors in ultrasonic images using an ensemble classifier based on the adaboost algorithm with feature selection","volume":"29","author":"Takemura","year":"2010","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.neucom.2016.06.082_bib0032","doi-asserted-by":"crossref","first-page":"2262","DOI":"10.1109\/TMI.2013.2279938","article-title":"Robust texture analysis using multi-resolution gray-scale in variant features for breast sonographic tumor diagnosis","volume":"32","author":"Yang","year":"2013","journal-title":"I EEE Trans. Med. Imaging"},{"key":"10.1016\/j.neucom.2016.06.082_bib0033","doi-asserted-by":"crossref","first-page":"34","DOI":"10.1016\/j.neucom.2013.09.056","article-title":"Attribute relation learning for zero-shot classification","volume":"139","author":"Liu","year":"2014","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2016.06.082_bib0034","first-page":"243","article-title":"Joint binary classifier learning for ECOC-based multi-class classification","volume":"73","author":"Liu","year":"2008","journal-title":"IEEE Trans. Pattern Anal. Mach."},{"key":"10.1016\/j.neucom.2016.06.082_bib0035","doi-asserted-by":"crossref","first-page":"243","DOI":"10.1007\/s10994-007-5040-8","article-title":"Convex multi-task feature learning","volume":"73","author":"Argyriou","year":"2008","journal-title":"Mach. Learn."},{"key":"10.1016\/j.neucom.2016.06.082_bib0036","series-title":"Advances in Neural Information Processing Systems 19","article-title":"Multi-task feature learning","author":"Argyriou","year":"2007"},{"key":"10.1016\/j.neucom.2016.06.082_bib0037","series-title":"SLEP: Sparse Learning With Efficient Projections","author":"Liu","year":"2009"},{"key":"10.1016\/j.neucom.2016.06.082_bib0038","doi-asserted-by":"crossref","unstructured":"M. Liu, D. Zhang, D. Shen. View-centralized multi-atlas classification for Alzheimer's disease diagnosis, Hum. Brain Mapp., 26(2015) 1847\u20131865","DOI":"10.1002\/hbm.22741"},{"key":"10.1016\/j.neucom.2016.06.082_bib0039","doi-asserted-by":"crossref","first-page":"1473","DOI":"10.1109\/TBME.2015.2496233","article-title":"Inherent structure based multi-view learning with multi-atlas feature representation for Alzheimer's disease diagnosis","volume":"63","author":"Liu","year":"2016","journal-title":"IEEE Trans. Biomed. Eng."},{"key":"10.1016\/j.neucom.2016.06.082_bib0040","first-page":"381","article-title":"TRIC: Trust Region for Invariant Compactness and Its Application to Abdominal Aorta Segmentation","volume":"8673","author":"Ayed","year":"2014","journal-title":"17th Medical Image Computing and Computer-Assisted Intervention (MICCAI)"},{"key":"10.1016\/j.neucom.2016.06.082_bib0041","doi-asserted-by":"crossref","first-page":"1980","DOI":"10.1016\/j.patrec.2008.06.017","article-title":"Texture classification using invariant ranklet features","volume":"29","author":"Masotti","year":"2008","journal-title":"Pattern Recognit. Lett."}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231217302400?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231217302400?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,9,18]],"date-time":"2019-09-18T13:18:11Z","timestamp":1568812691000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231217302400"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,10]]},"references-count":41,"alternative-id":["S0925231217302400"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2016.06.082","relation":{},"ISSN":["0925-2312"],"issn-type":[{"value":"0925-2312","type":"print"}],"subject":[],"published":{"date-parts":[[2017,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Robust texture analysis of multi-modal images using Local Structure Preserving Ranklet and multi-task learning for breast tumor diagnosis","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2016.06.082","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2017 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}