{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,7]],"date-time":"2024-07-07T23:52:07Z","timestamp":1720396327338},"reference-count":92,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2016,2,1]],"date-time":"2016-02-01T00:00:00Z","timestamp":1454284800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100000780","name":"European Commission","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100000780","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Spanish MINECO Juan de la Cierva Fellowship","award":["JCI-2012-15359"]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2016,2]]},"DOI":"10.1016\/j.neucom.2015.11.023","type":"journal-article","created":{"date-parts":[[2015,12,2]],"date-time":"2015-12-02T08:45:13Z","timestamp":1449045913000},"page":"317-333","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":2,"special_numbering":"C","title":["Deformable models direct supervised guidance: A novel paradigm for automatic image segmentation"],"prefix":"10.1016","volume":"177","author":[{"given":"Nicola","family":"Bova","sequence":"first","affiliation":[]},{"given":"Viktor","family":"G\u00e1l","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5301-8277","authenticated-orcid":false,"given":"\u00d3scar","family":"Ib\u00e1\u00f1ez","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5112-5629","authenticated-orcid":false,"given":"\u00d3scar","family":"Cord\u00f3n","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"Part B","key":"10.1016\/j.neucom.2015.11.023_bib1","doi-asserted-by":"crossref","first-page":"820","DOI":"10.1016\/j.neucom.2014.07.052","article-title":"An efficient self-organizing active contour model for image segmentation","volume":"149","author":"Abdelsamea","year":"2015","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2015.11.023_bib2","doi-asserted-by":"crossref","unstructured":"M.M. Abdelsamea, G. Gnecco, M.M. Gaber, E. Elyan, On the relationship between variational level set-based and som-based active contours, Comput. Intell. Neurosci., 2015. Volume 2015 (2015), Article ID 109029, 19 pages http:\/\/dx.doi.org\/10.1155\/2015\/109029.","DOI":"10.1155\/2015\/109029"},{"key":"10.1016\/j.neucom.2015.11.023_bib3","doi-asserted-by":"crossref","first-page":"269","DOI":"10.1006\/jcph.1995.1098","article-title":"A fast level set method for propagating interfaces","volume":"118","author":"Adalsteinsson","year":"1994","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.neucom.2015.11.023_bib4","doi-asserted-by":"crossref","unstructured":"S. Aja-Fernandez, G. Vegas-Sanchez-Ferrero, M. Martin Fernandez, Soft thresholding for medical image segmentation, in: Proceedings of the International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2010, pp. 4752\u20134755.","DOI":"10.1109\/IEMBS.2010.5626376"},{"key":"10.1016\/j.neucom.2015.11.023_bib5","unstructured":"Allen Institute for Brain Science, 2004\u20132006. Allen Reference Atlases. \u3008http:\/\/www.mouse.brain-map.org\u3009."},{"key":"10.1016\/j.neucom.2015.11.023_bib6","series-title":"Introduction to Machine Learning","author":"Alpaydin","year":"2010"},{"key":"10.1016\/j.neucom.2015.11.023_bib7","unstructured":"F.M. Ansia, Automatic 3D shape reconstruction of bones using active nets based segmentation, in: Proceedings of the International Conference on Pattern Recognition, vol. 1, IEEE Computer Society, Washington, DC, USA, 2000."},{"issue":"11","key":"10.1016\/j.neucom.2015.11.023_bib8","doi-asserted-by":"crossref","first-page":"1711","DOI":"10.1016\/j.neurobiolaging.2008.01.010","article-title":"A Meta-Analysis of Hippocampal Atrophy Rates in Alzheimer\u05f3s Disease","volume":"30","author":"Bartlett","year":"2009","journal-title":"Neurobiology of Aging"},{"key":"10.1016\/j.neucom.2015.11.023_bib9","doi-asserted-by":"crossref","first-page":"20","DOI":"10.1145\/1007730.1007735","article-title":"A study of the behavior of several methods for balancing machine learning training data","volume":"6","author":"Batista","year":"2004","journal-title":"ACM SIGKDD Explor.\u00a0Newsl."},{"key":"10.1016\/j.neucom.2015.11.023_bib10","first-page":"62","article-title":"Automated segmentation of the cerebellar lobules using boundary specific classification and evolution","author":"Bogovic","year":"2013","journal-title":"Inf.\u00a0Process.\u00a0Med. Imaging"},{"key":"10.1016\/j.neucom.2015.11.023_bib11","doi-asserted-by":"crossref","unstructured":"B.E. Boser, I.M. Guyon, V.N. Vapnik, A training algorithm for optimal margin classifiers, in: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, ACM, New York, NY, USA, 1992, pp. 144\u2013152.","DOI":"10.1145\/130385.130401"},{"key":"10.1016\/j.neucom.2015.11.023_bib12","doi-asserted-by":"crossref","first-page":"493","DOI":"10.1002\/widm.1072","article-title":"Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics","volume":"2","author":"Boulesteix","year":"2012","journal-title":"WIREs Data Min. Knowl. Discov."},{"key":"10.1016\/j.neucom.2015.11.023_bib13","doi-asserted-by":"crossref","first-page":"905","DOI":"10.1016\/j.imavis.2013.09.004","article-title":"Extended topological active nets","volume":"31","author":"Bova","year":"2013","journal-title":"Image Vis. Comput."},{"key":"10.1016\/j.neucom.2015.11.023_bib14","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","article-title":"Random forests","volume":"45","author":"Breiman","year":"2001","journal-title":"Mach.\u00a0Learn."},{"key":"10.1016\/j.neucom.2015.11.023_bib15","unstructured":"M. Bro-Nielsen, Active nets and cubes, IMM Technical Report, 1994."},{"key":"10.1016\/j.neucom.2015.11.023_bib16","doi-asserted-by":"crossref","first-page":"679","DOI":"10.1109\/TPAMI.1986.4767851","article-title":"A computational approach to edge detection","volume":"8","author":"Canny","year":"1986","journal-title":"IEEE Trans.\u00a0Pattern Anal.\u00a0Mach.\u00a0Intell."},{"key":"10.1016\/j.neucom.2015.11.023_bib17","first-page":"61","article-title":"Geodesic active contours","volume":"22","author":"Caselles","year":"1997","journal-title":"Int.\u00a0J.\u00a0Comput.\u00a0Vis."},{"key":"10.1016\/j.neucom.2015.11.023_bib18","doi-asserted-by":"crossref","first-page":"266","DOI":"10.1109\/83.902291","article-title":"Active contours without edges","volume":"10","author":"Chan","year":"2001","journal-title":"IEEE Trans.\u00a0Image Process."},{"key":"10.1016\/j.neucom.2015.11.023_bib19","unstructured":"C.C. Chang, C.J. Lin, LIBSVM: a library for support vector machines, 2006."},{"key":"10.1016\/j.neucom.2015.11.023_bib20","first-page":"321","article-title":"Smote","volume":"16","author":"Chawla","year":"2002","journal-title":"J.\u00a0Artif.\u00a0Intell.\u00a0Res."},{"key":"10.1016\/j.neucom.2015.11.023_bib21","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/1007730.1007733","article-title":"Editorial","volume":"6","author":"Chawla","year":"2004","journal-title":"ACM SIGKDD Explor.\u00a0Newsl."},{"key":"10.1016\/j.neucom.2015.11.023_bib22","doi-asserted-by":"crossref","first-page":"3501","DOI":"10.1016\/j.patcog.2012.02.038","article-title":"Neuro-levelset system based segmentation in dynamic susceptibility contrast enhanced and diffusion weighted magnetic resonance images","volume":"45","author":"Chinnadurai","year":"2012","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.neucom.2015.11.023_bib23","doi-asserted-by":"crossref","first-page":"681","DOI":"10.1109\/34.927467","article-title":"Active appearance models","volume":"23","author":"Cootes","year":"2001","journal-title":"IEEE Trans.\u00a0Pattern Anal.\u00a0Mach.\u00a0Intell."},{"key":"10.1016\/j.neucom.2015.11.023_bib24","doi-asserted-by":"crossref","unstructured":"T.F. Cootes, M. Ionita, C. Lidner, P. Sauer, Robust and accurate shape model fitting using random forest regression voting, in: 12th European Conference on Computer Vision, Florence, Italy, 2012, pp. 278\u2013291.","DOI":"10.1007\/978-3-642-33786-4_21"},{"key":"10.1016\/j.neucom.2015.11.023_bib25","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1007\/BF00994018","article-title":"Support-vector networks","volume":"20","author":"Cortes","year":"1995","journal-title":"Mach.\u00a0Learn."},{"key":"10.1016\/j.neucom.2015.11.023_bib26","series-title":"An Introduction to Support Vector Machines: And Other Kernel-Based Learning Methods","author":"Cristianini","year":"2000"},{"key":"10.1016\/j.neucom.2015.11.023_bib27","unstructured":"N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR\u05f305), vol. 1\u201301, IEEE Computer Society, Washington, DC, USA, 2005, pp. 886\u2013893."},{"key":"10.1016\/j.neucom.2015.11.023_bib28","doi-asserted-by":"crossref","first-page":"847","DOI":"10.1016\/0042-6989(80)90065-6","article-title":"Two-dimensional spectral analysis of cortical receptive field profiles","volume":"20","author":"Daugman","year":"1980","journal-title":"Vis. Res."},{"key":"10.1016\/j.neucom.2015.11.023_bib29","doi-asserted-by":"crossref","first-page":"1160","DOI":"10.1364\/JOSAA.2.001160","article-title":"Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters","volume":"2","author":"Daugman","year":"1985","journal-title":"J. Opt. Soc.\u00a0Am. A: Opt. Image Sci. Vis."},{"key":"10.1016\/j.neucom.2015.11.023_bib30","doi-asserted-by":"crossref","first-page":"1627","DOI":"10.1109\/TPAMI.2009.167","article-title":"Object detection with discriminatively trained part-based models","volume":"32","author":"Felzenszwalb","year":"2010","journal-title":"IEEE Trans. Pattern Anal.\u00a0Mach. Intell."},{"key":"10.1016\/j.neucom.2015.11.023_bib31","doi-asserted-by":"crossref","first-page":"55","DOI":"10.1023\/B:VISI.0000042934.15159.49","article-title":"Pictorial structures for object recognition","volume":"61","author":"Felzenszwalb","year":"2005","journal-title":"Int. J. Comput. Vis."},{"key":"10.1016\/j.neucom.2015.11.023_bib32","doi-asserted-by":"crossref","unstructured":"V. Gal, E. Kerre, D. Tikk, Organ detection in medical images with discriminately trained deformable part model, in: Proceedings of IEEE 9th International Conference on Computational Cybernetics (ICCC), 2013, pp. 153\u2013157.","DOI":"10.1109\/ICCCyb.2013.6617579"},{"key":"10.1016\/j.neucom.2015.11.023_bib33","doi-asserted-by":"crossref","unstructured":"S. Ghose, J. Mitra, A. Oliver, R. Mart\u00ed, X. Llad\u00f3, J. Freixenet, J.C. Vilanova, J. Comet, D. Sidib\u00e9, F. Meriaudeau, A supervised learning framework for automatic prostate segmentation in trans rectal ultrasound images, in: Proceedings of the 14th International Conference on Advanced Concepts for Intelligent Vision Systems, Springer-Verlag, Berlin, Heidelberg, 2012, pp. 190\u2013200.","DOI":"10.1007\/978-3-642-33140-4_17"},{"key":"10.1016\/j.neucom.2015.11.023_bib34","doi-asserted-by":"crossref","first-page":"587","DOI":"10.1016\/j.media.2013.04.001","article-title":"A supervised learning framework of statistical shape and probability priors for automatic prostate segmentation in ultrasound images","volume":"17","author":"Ghose","year":"2013","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.neucom.2015.11.023_bib35","doi-asserted-by":"crossref","first-page":"19","DOI":"10.1016\/j.media.2005.02.002","article-title":"Segmentation of anatomical structures in chest radiographs using supervised methods","volume":"10","author":"Van Ginneken","year":"2006","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.neucom.2015.11.023_bib36","series-title":"Digital Image Processing","author":"Gonzalez","year":"2001"},{"key":"10.1016\/j.neucom.2015.11.023_bib37","doi-asserted-by":"crossref","first-page":"786","DOI":"10.1109\/PROC.1979.11328","article-title":"Statistical and structural approaches to texture","volume":"67","author":"Haralick","year":"1979","journal-title":"Proceedings of the IEEE"},{"key":"10.1016\/j.neucom.2015.11.023_bib38","doi-asserted-by":"crossref","first-page":"610","DOI":"10.1109\/TSMC.1973.4309314","article-title":"Textural features for image classification","volume":"3","author":"Haralick","year":"1973","journal-title":"IEEE Trans. Syst. Man Cybern."},{"key":"10.1016\/j.neucom.2015.11.023_bib39","doi-asserted-by":"crossref","first-page":"1263","DOI":"10.1109\/TKDE.2008.239","article-title":"Learning from imbalanced data","volume":"21","author":"He","year":"2009","journal-title":"IEEE Trans.\u00a0Knowl.\u00a0Data Eng."},{"key":"10.1016\/j.neucom.2015.11.023_bib40","doi-asserted-by":"crossref","first-page":"543","DOI":"10.1016\/j.media.2009.05.004","article-title":"Statistical shape models for 3d medical image segmentation","volume":"13","author":"Heimann","year":"2009","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.neucom.2015.11.023_bib41","doi-asserted-by":"crossref","first-page":"37","DOI":"10.1111\/j.1469-8137.1912.tb05611.x","article-title":"The distribution of the flora in the alpine zone","volume":"11","author":"Jaccard","year":"1912","journal-title":"New Phytol."},{"key":"10.1016\/j.neucom.2015.11.023_bib42","series-title":"Principal Component Analysis","author":"Jolliffe","year":"2002"},{"key":"10.1016\/j.neucom.2015.11.023_bib43","doi-asserted-by":"crossref","first-page":"321","DOI":"10.1007\/BF00133570","article-title":"Snakes","volume":"1","author":"Kass","year":"1988","journal-title":"Int. J. Comput.\u00a0Vis."},{"key":"10.1016\/j.neucom.2015.11.023_bib44","doi-asserted-by":"crossref","first-page":"189","DOI":"10.1007\/BF01451741","article-title":"Shapes, shocks, and deformations I","volume":"15","author":"Kimia","year":"1994","journal-title":"Int. J. Comput.\u00a0Vis."},{"key":"10.1016\/j.neucom.2015.11.023_bib45","doi-asserted-by":"crossref","first-page":"635","DOI":"10.1109\/34.387512","article-title":"Finding shortest paths on surfaces using level sets propagation","volume":"17","author":"Kimmel","year":"1995","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.neucom.2015.11.023_bib46","series-title":"Combining Pattern Classifiers: Methods and Algorithms","author":"Kuncheva","year":"2004"},{"key":"10.1016\/j.neucom.2015.11.023_bib47","doi-asserted-by":"crossref","first-page":"76","DOI":"10.1080\/18756891.2012.670523","article-title":"Intelligent recognition of lung nodule combining rule-based and c-svm classifiers","author":"Li","year":"2012","journal-title":"Int. J. Comput. Intell.\u00a0Syst."},{"key":"10.1016\/j.neucom.2015.11.023_bib48","doi-asserted-by":"crossref","first-page":"65","DOI":"10.1016\/j.compmedimag.2005.10.007","article-title":"An automatic variational level set segmentation framework for computer aided dental x-rays analysis in clinical environments","volume":"30","author":"Li","year":"2006","journal-title":"Comput. Med. Imaging Graph."},{"key":"10.1016\/j.neucom.2015.11.023_bib49","doi-asserted-by":"crossref","unstructured":"Y. Lian, F. Wu, Integrating adaptive probabilistic neural network with level set methods for mr image segmentation, in: Proceedings of the 2011 6th IEEE Conference on Industrial Electronics and Applications, 2011, pp. 1746\u20131749.","DOI":"10.1109\/ICIEA.2011.5975874"},{"key":"10.1016\/j.neucom.2015.11.023_bib50","doi-asserted-by":"crossref","first-page":"202","DOI":"10.1109\/TVCG.2011.77","article-title":"Interactive image segmentation based on level sets of probabilities","volume":"18","author":"Liu","year":"2012","journal-title":"IEEE Trans.\u00a0Vis. Comput.\u00a0Graph."},{"key":"10.1016\/j.neucom.2015.11.023_bib51","doi-asserted-by":"crossref","first-page":"49","DOI":"10.1007\/s11265-008-0198-2","article-title":"Automated breast cancer diagnosis based on gvf-snake segmentation, wavelet features extraction and fuzzy classification","volume":"55","author":"Malek","year":"2009","journal-title":"J. Signal Process.\u00a0Syst."},{"key":"10.1016\/j.neucom.2015.11.023_bib52","doi-asserted-by":"crossref","first-page":"530","DOI":"10.1109\/TPAMI.2004.1273918","article-title":"Learning to detect natural image boundaries using local brightness, color, and texture cues","volume":"26","author":"Martin","year":"2004","journal-title":"IEEE Trans.\u00a0Pattern Anal.\u00a0Mach.\u00a0Intell."},{"key":"10.1016\/j.neucom.2015.11.023_bib53","doi-asserted-by":"crossref","first-page":"91","DOI":"10.1016\/S1361-8415(96)80007-7","article-title":"Deformable models in medical image analysis","volume":"1","author":"McInerney","year":"1996","journal-title":"Med.\u00a0Image Anal."},{"key":"10.1016\/j.neucom.2015.11.023_bib54","doi-asserted-by":"crossref","first-page":"299","DOI":"10.1016\/j.patrec.2012.10.012","article-title":"Automatic hippocampus localization in histological images using differential evolution-based deformable models","volume":"34","author":"Mesejo","year":"2013","journal-title":"Pattern Recognit.\u00a0Lett."},{"key":"10.1016\/j.neucom.2015.11.023_bib55","doi-asserted-by":"crossref","first-page":"167","DOI":"10.1016\/j.compmedimag.2013.12.005","article-title":"Biomedical image segmentation using geometric deformable models and metaheuristics","volume":"43","author":"Mesejo","year":"2015","journal-title":"Comput. Med. Imaging Graph."},{"key":"10.1016\/j.neucom.2015.11.023_bib56","first-page":"71","article-title":"Segmentation of magnetic resonance images using a combination of neural networks and active contour models","volume":"26","author":"Middleton","year":"2004","journal-title":"Med.\u00a0Eng.\u00a0Phys."},{"key":"10.1016\/j.neucom.2015.11.023_bib57","first-page":"1023","article-title":"A review of deformable surfaces","volume":"9","author":"Montagnat","year":"2001","journal-title":"Image\u00a0Vis.\u00a0Comput."},{"key":"10.1016\/j.neucom.2015.11.023_bib58","doi-asserted-by":"crossref","first-page":"51","DOI":"10.1016\/0031-3203(95)00067-4","article-title":"A comparative study of texture measures with classification based on featured distributions","volume":"29","author":"Ojala","year":"1996","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.neucom.2015.11.023_bib59","doi-asserted-by":"crossref","unstructured":"J. Olivier, R. Bon\u00e9, J.J. Rousselle, H. Cardot, Active contours driven by supervised binary classifiers for texture segmentation, in: Proceedings of the 4th International Symposium on Advances in Visual Computing, Springer-Verlag, Berlin, Heidelberg, 2008, pp. 288\u2013297.","DOI":"10.1007\/978-3-540-89639-5_28"},{"key":"10.1016\/j.neucom.2015.11.023_bib60","doi-asserted-by":"crossref","first-page":"12","DOI":"10.1016\/0021-9991(88)90002-2","article-title":"Fronts propagating with curvature-dependent speed","volume":"79","author":"Osher","year":"1988","journal-title":"J.\u00a0Comput.\u00a0Phys."},{"key":"10.1016\/j.neucom.2015.11.023_bib61","first-page":"345","article-title":"A variational approach for the segmentation of the left ventricle in cardiac image analysis","volume":"50","author":"Paragios","year":"2002","journal-title":"Int.\u00a0J.\u00a0Comput.\u00a0Vis."},{"key":"10.1016\/j.neucom.2015.11.023_bib62","doi-asserted-by":"crossref","first-page":"402","DOI":"10.1109\/TPAMI.2004.1262337","article-title":"Gradient vector flow fast geometric active contours","volume":"26","author":"Paragios","year":"2004","journal-title":"IEEE Trans.\u00a0Pattern Anal. Mach.\u00a0Intell."},{"key":"10.1016\/j.neucom.2015.11.023_bib63","first-page":"131","article-title":"An automated method for lumen and media-adventitia border detection in a sequence of IVUS frames","volume":"8","author":"Plissiti","year":"2004","journal-title":"IEEE Trans.\u00a0Inf.\u00a0Technol.\u00a0Biomed."},{"key":"10.1016\/j.neucom.2015.11.023_bib64","doi-asserted-by":"crossref","unstructured":"N. Quang Long, D. Jiang, C. Ding, Application of artificial neural networks in automatic cartilage segmentation, in: Proceedings of the Third International Workshop on Advanced Computational Intelligence, 2010.","DOI":"10.1109\/IWACI.2010.5585177"},{"key":"10.1016\/j.neucom.2015.11.023_bib65","doi-asserted-by":"crossref","unstructured":"S.H. Rezatofighi, K. Khaksari, H. Soltanian-Zadeh, Automatic recognition of five types of white blood cells in peripheral blood, in: Proceedings of the 7th International Conference on Image Analysis and Recognition, vol. Part II, Springer-Verlag, Berlin, Heidelberg, 2010, pp. 161\u2013172.","DOI":"10.1007\/978-3-642-13775-4_17"},{"key":"10.1016\/j.neucom.2015.11.023_bib66","doi-asserted-by":"crossref","first-page":"1619","DOI":"10.1109\/TPAMI.2006.211","article-title":"Rotation forest","volume":"28","author":"Rodriguez","year":"2006","journal-title":"IEEE Trans.\u00a0Pattern Anal.\u00a0Mach.\u00a0Intell."},{"key":"10.1016\/j.neucom.2015.11.023_bib67","first-page":"25","article-title":"Affine invariant scale-space","volume":"11","author":"Sapiro","year":"1993","journal-title":"Int.\u00a0J.\u00a0Comput.\u00a0Vis."},{"key":"10.1016\/j.neucom.2015.11.023_bib68","doi-asserted-by":"crossref","unstructured":"R. Seguier, N. Cladel, Genetic snakes: application on lipreading, in: International Conference on Artificial Neural Networks and Genetic Algorithms, 2003.","DOI":"10.1007\/978-3-7091-0646-4_41"},{"key":"10.1016\/j.neucom.2015.11.023_bib69","series-title":"Cambridge Monographs on Applied and Computational Mathematics","article-title":"Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science","author":"Sethian","year":"1999"},{"key":"10.1016\/j.neucom.2015.11.023_bib70","doi-asserted-by":"crossref","unstructured":"Y. Shang, A. Markova, R. Deklerck, E. Nyssen, X. Yang, J. de Mey, Liver segmentation by an active contour model with embedded gaussian mixture model based classifiers, in: Proceedings of SPIE 7723, Optics, Photonics, and Digital Technologies for Multimedia Applications, 2010, p.772313.","DOI":"10.1117\/12.855050"},{"key":"10.1016\/j.neucom.2015.11.023_bib71","unstructured":"Y. Shi, W.C. Karl, A fast level set method without solving PDEs, in: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005, pp. 97\u2013100."},{"key":"10.1016\/j.neucom.2015.11.023_bib72","doi-asserted-by":"crossref","first-page":"645","DOI":"10.1109\/TIP.2008.920737","article-title":"A real-time algorithm for the approximation of level-set-based curve evolution","volume":"17","author":"Shi","year":"2008","journal-title":"IEEE Trans.\u00a0Image Process."},{"key":"10.1016\/j.neucom.2015.11.023_bib73","first-page":"71","article-title":"Development of a digital image database for chest radiographs with and without a lung nodule","volume":"174","author":"Shiraishi","year":"2000","journal-title":"Am.\u00a0J.\u00a0Roentgenol."},{"key":"10.1016\/j.neucom.2015.11.023_bib74","doi-asserted-by":"crossref","first-page":"687","DOI":"10.1142\/S0218001409007326","article-title":"Classification of imbalanced data","volume":"23","author":"Sun","year":"2009","journal-title":"Int.\u00a0J.\u00a0Pattern Recognit.\u00a0Artif.\u00a0Intell."},{"key":"10.1016\/j.neucom.2015.11.023_bib75","doi-asserted-by":"crossref","unstructured":"M.M. Swathanthira Kumar, J.M.J. Sullivan, Automatic brain cropping enhancement using active contours initialized by a PCNN, in: Proceedings of SPIE 7259, Medical Imaging 2009: Image Processing, 2009, p.72594I.","DOI":"10.1117\/12.811636"},{"key":"10.1016\/j.neucom.2015.11.023_bib76","doi-asserted-by":"crossref","first-page":"619","DOI":"10.1016\/j.compbiomed.2011.05.013","article-title":"Brain volumetry","volume":"41","author":"Tanoori","year":"2011","journal-title":"Comput.\u00a0Biol.\u00a0Med."},{"key":"10.1016\/j.neucom.2015.11.023_bib77","doi-asserted-by":"crossref","first-page":"1710","DOI":"10.1016\/j.patrec.2013.04.026","article-title":"Using classifiers as heuristics to describe local structure in active shape models with small training sets","volume":"34","author":"Tedin","year":"2013","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.neucom.2015.11.023_bib78","doi-asserted-by":"crossref","first-page":"306","DOI":"10.1007\/BF01908877","article-title":"Deformable models","volume":"4","author":"Terzopoulos","year":"1988","journal-title":"Vis. Comput."},{"key":"10.1016\/j.neucom.2015.11.023_bib79","article-title":"Coupling of radial-basis network and active contour model for multispectral brain MRI segmentation","volume":"51","author":"Vald\u00e9s-Cristerna","year":"2004","journal-title":"IEEE Trans.\u00a0Biomed.\u00a0Eng."},{"key":"10.1016\/j.neucom.2015.11.023_bib80","doi-asserted-by":"crossref","first-page":"151","DOI":"10.1016\/j.artmed.2014.01.006","article-title":"Intensity-based image registration using scatter search","volume":"60","author":"Valsecchi","year":"2014","journal-title":"Artif.\u00a0Intell.\u00a0Med."},{"key":"10.1016\/j.neucom.2015.11.023_bib81","doi-asserted-by":"crossref","first-page":"271","DOI":"10.1023\/A:1020874308076","article-title":"A multiphase level set framework for image segmentation using the mumford and shah model","volume":"50","author":"Vese","year":"2002","journal-title":"Int.\u00a0J.\u00a0Comput. Vis."},{"key":"10.1016\/j.neucom.2015.11.023_bib82","first-page":"2781","article-title":"Blood cell image segmentation on color and GVF snake for leukocyte classification on SVM","volume":"20","author":"Wang","year":"2012","journal-title":"Guangxue Jingmi Gongcheng\/Opt.\u00a0Precis.\u00a0Eng."},{"issue":"Part 3","key":"10.1016\/j.neucom.2015.11.023_bib83","doi-asserted-by":"crossref","first-page":"1086","DOI":"10.1016\/j.neucom.2014.01.079","article-title":"Multi-scale local region based level set method for image segmentation in the presence of intensity inhomogeneity","volume":"151","author":"Wang","year":"2015","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2015.11.023_bib84","doi-asserted-by":"crossref","first-page":"12","DOI":"10.1109\/79.888862","article-title":"Multimedia content analysis-using both audio and visual clues","volume":"17","author":"Wang","year":"2000","journal-title":"IEEE Signal Process.\u00a0Mag."},{"key":"10.1016\/j.neucom.2015.11.023_bib85","doi-asserted-by":"crossref","first-page":"7","DOI":"10.1145\/1007730.1007734","article-title":"Mining with rarity","volume":"6","author":"Weiss","year":"2004","journal-title":"ACM SIGKDD Explor.\u00a0Newsl."},{"key":"10.1016\/j.neucom.2015.11.023_bib86","first-page":"203","article-title":"A level-set approach to 3d reconstruction from range data","volume":"29","author":"Whitaker","year":"1998","journal-title":"Int.\u00a0J.\u00a0Comput.\u00a0Vis."},{"key":"10.1016\/j.neucom.2015.11.023_bib87","doi-asserted-by":"crossref","unstructured":"A. Wimmer, G. Soza, J. Hornegger, A generic probabilistic active shape model for organ segmentation, in: Proceedings of the 12th International Conference on Medical Image Computing and Computer-Assisted Intervention: Part II, Springer-Verlag, Berlin, Heidelberg, 2009, pp. 26\u201333.","DOI":"10.1007\/978-3-642-04271-3_4"},{"key":"10.1016\/j.neucom.2015.11.023_bib88","doi-asserted-by":"crossref","first-page":"1133","DOI":"10.1016\/j.neucom.2014.04.085","article-title":"An active contour model based on fused texture features for image segmentation","volume":"151","author":"Wu","year":"2015","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2015.11.023_bib89","doi-asserted-by":"crossref","first-page":"1385","DOI":"10.1016\/j.media.2012.07.007","article-title":"Deformable segmentation via sparse representation and dictionary learning","volume":"16","author":"Zhang","year":"2012","journal-title":"Med.\u00a0Image Anal."},{"key":"10.1016\/j.neucom.2015.11.023_bib90","doi-asserted-by":"crossref","first-page":"1256","DOI":"10.1016\/j.patrec.2004.11.009","article-title":"A hybrid boundary detection algorithm based on watershed and snake","volume":"26","author":"Zhao","year":"2005","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.neucom.2015.11.023_bib91","doi-asserted-by":"crossref","first-page":"483","DOI":"10.1016\/j.media.2009.02.005","article-title":"Congenital aortic disease","volume":"13","author":"Zhao","year":"2009","journal-title":"Med.\u00a0Image Anal."},{"key":"10.1016\/j.neucom.2015.11.023_bib92","doi-asserted-by":"crossref","first-page":"199","DOI":"10.1016\/j.neucom.2014.12.061","article-title":"Active contours driven by localizing region and edge-based intensity fitting energy with application to segmentation of the left ventricle in cardiac CT images","volume":"156","author":"Zhou","year":"2015","journal-title":"Neurocomputing"}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231215017427?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231215017427?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,7,3]],"date-time":"2022-07-03T16:32:06Z","timestamp":1656865926000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231215017427"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2016,2]]},"references-count":92,"alternative-id":["S0925231215017427"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2015.11.023","relation":{},"ISSN":["0925-2312"],"issn-type":[{"value":"0925-2312","type":"print"}],"subject":[],"published":{"date-parts":[[2016,2]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Deformable models direct supervised guidance: A novel paradigm for automatic image segmentation","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2015.11.023","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"Copyright \u00a9 2015 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}