{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T08:31:04Z","timestamp":1726043464766},"reference-count":35,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2016,1,1]],"date-time":"2016-01-01T00:00:00Z","timestamp":1451606400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61203281","61303172","61403385"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Hundred Talents Program of Chinese Academy of Sciences","award":["Y3S4011D31"]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2016,1]]},"DOI":"10.1016\/j.neucom.2015.09.096","type":"journal-article","created":{"date-parts":[[2015,10,18]],"date-time":"2015-10-18T11:52:59Z","timestamp":1445169179000},"page":"806-814","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":228,"special_numbering":"PB","title":["Semantic expansion using word embedding clustering and convolutional neural network for improving short text classification"],"prefix":"10.1016","volume":"174","author":[{"given":"Peng","family":"Wang","sequence":"first","affiliation":[]},{"given":"Bo","family":"Xu","sequence":"additional","affiliation":[]},{"given":"Jiaming","family":"Xu","sequence":"additional","affiliation":[]},{"given":"Guanhua","family":"Tian","sequence":"additional","affiliation":[]},{"given":"Cheng-Lin","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Hongwei","family":"Hao","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neucom.2015.09.096_bib1","doi-asserted-by":"crossref","unstructured":"B. Sriram, D. Fuhry, E. Demir, H. Ferhatosmanoglu, M. Demirbas, Short text classification in twitter to improve information filtering, in: Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval, ACM, 2010, pp. 841\u2013842.","DOI":"10.1145\/1835449.1835643"},{"key":"10.1016\/j.neucom.2015.09.096_bib2","unstructured":"M. Chen, X. Jin, D. Shen, Short text classification improved by learning multi-granularity topics, in: Proceedings of the 22nd International Joint Conference on Artificial Intelligence, 2011, pp. 1776\u20131781."},{"key":"10.1016\/j.neucom.2015.09.096_bib3","doi-asserted-by":"crossref","unstructured":"X.-H. Phan, L.-M. Nguyen, S. Horiguchi, Learning to classify short and sparse text & web with hidden topics from large-scale data collections, in: Proceedings of the 17th International Conference on World Wide Web, ACM, 2008, pp. 91\u2013100.","DOI":"10.1145\/1367497.1367510"},{"key":"10.1016\/j.neucom.2015.09.096_bib4","first-page":"993","article-title":"Latent Dirichlet allocation","volume":"3","author":"Blei","year":"2003","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.neucom.2015.09.096_bib5","doi-asserted-by":"crossref","unstructured":"M. Sahami, T.D. Heilman, A web-based kernel function for measuring the similarity of short text snippets, in: Proceedings of the 15th International Conference on World Wide Web, ACM, 2006, pp. 377\u2013386.","DOI":"10.1145\/1135777.1135834"},{"key":"10.1016\/j.neucom.2015.09.096_bib6","doi-asserted-by":"crossref","unstructured":"X. Yan, J. Guo, Y. Lan, X. Cheng, A biterm topic model for short texts, in: Proceedings of the 22nd International Conference on World Wide Web, ACM, 2013, pp. 1445\u20131456.","DOI":"10.1145\/2488388.2488514"},{"key":"10.1016\/j.neucom.2015.09.096_bib7","first-page":"1137","article-title":"A neural probabilistic language model","volume":"3","author":"Bengio","year":"2003","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.neucom.2015.09.096_bib8","unstructured":"T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient estimation of word representations in vector space arxiv:hepth\/1301.3781."},{"key":"10.1016\/j.neucom.2015.09.096_bib9","first-page":"3111","article-title":"Distributed representations of words and phrases and their compositionality","author":"Mikolov","year":"2013","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.neucom.2015.09.096_bib10","unstructured":"T. Mikolov, W.-T. Yih, G. Zweig, Linguistic regularities in continuous space word representations, in: HLT-NAACL, 2013, pp. 746\u2013751."},{"key":"10.1016\/j.neucom.2015.09.096_bib11","first-page":"2493","article-title":"Natural language processing (almost) from scratch","volume":"12","author":"Collobert","year":"2011","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.neucom.2015.09.096_bib12","unstructured":"Q.V. Le, T. Mikolov, Distributed representations of sentences and documents, arxiv:hepth\/1405.4053."},{"issue":"9","key":"10.1016\/j.neucom.2015.09.096_bib13","doi-asserted-by":"crossref","first-page":"2138","DOI":"10.1109\/TKDE.2013.65","article-title":"Clustering-guided sparse structural learning for unsupervised feature selection","volume":"26","author":"Li","year":"2014","journal-title":"IEEE Trans. Knowl. Data Eng."},{"issue":"6191","key":"10.1016\/j.neucom.2015.09.096_bib14","doi-asserted-by":"crossref","first-page":"1492","DOI":"10.1126\/science.1242072","article-title":"Clustering by fast search and find of density peaks","volume":"344","author":"Rodriguez","year":"2014","journal-title":"Science"},{"key":"10.1016\/j.neucom.2015.09.096_bib15","doi-asserted-by":"crossref","unstructured":"X. Li, D. Roth, Learning question classifiers, in: Proceedings of the 19th International Conference on Computational Linguistics, Association for Computational Linguistics, 2002, pp. 1\u20137.","DOI":"10.3115\/1072228.1072378"},{"key":"10.1016\/j.neucom.2015.09.096_bib16","unstructured":"G. Zhou, Y. Liu, F. Liu, D. Zeng, J. Zhao, Improving question retrieval in community question answering using world knowledge, in: Proceedings of the 23rd International Joint Conference on Artificial Intelligence, 2013, pp. 2239\u20132245."},{"key":"10.1016\/j.neucom.2015.09.096_bib17","unstructured":"A. Mnih, Y.W. Teh, A fast and simple algorithm for training neural probabilistic language models, arxiv:hepth\/1206.6426."},{"key":"10.1016\/j.neucom.2015.09.096_bib18","unstructured":"N. Kalchbrenner, E. Grefenstette, P. Blunsom, A convolutional neural network for modelling sentences, arxiv:hepth\/1404.2188."},{"key":"10.1016\/j.neucom.2015.09.096_bib19","unstructured":"Y. Kim, Convolutional neural networks for sentence classification, arxiv:hepth\/1408.5882."},{"key":"10.1016\/j.neucom.2015.09.096_bib20","unstructured":"D. Zeng, K. Liu, S. Lai, G. Zhou, J. Zhao, Relation classification via convolutional deep neural network, in: Proceedings of the 25th International Conference on Computational Linguistics, 2014, pp. 2335\u20132344."},{"key":"10.1016\/j.neucom.2015.09.096_bib21","unstructured":"R. Socher, A. Perelygin, J.Y. Wu, J. Chuang, C.D. Manning, A.Y. Ng, C. Potts, Recursive deep models for semantic compositionality over a sentiment treebank, in: Proceedings of the Conference on Empirical Methods in Natural Language Processing, vol. 1631, 2013, p. 1642."},{"key":"10.1016\/j.neucom.2015.09.096_bib22","unstructured":"G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, R.R. Salakhutdinov, Improving neural networks by preventing co-adaptation of feature detectors, arxiv:hepth\/1207.0580."},{"key":"10.1016\/j.neucom.2015.09.096_bib23","doi-asserted-by":"crossref","unstructured":"M. Sundermeyer, R. Schl\u00fcter, H. Ney, Lstm neural networks for language modeling, in: INTERSPEECH, 2012.","DOI":"10.21437\/Interspeech.2012-65"},{"issue":"8","key":"10.1016\/j.neucom.2015.09.096_bib24","doi-asserted-by":"crossref","first-page":"1735","DOI":"10.1162\/neco.1997.9.8.1735","article-title":"Long short-term memory","volume":"9","author":"Hochreiter","year":"1997","journal-title":"Neural Comput."},{"key":"10.1016\/j.neucom.2015.09.096_bib25","unstructured":"I. Sutskever, O. Vinyals, Q.V. Le, Sequence to sequence learning with neural networks, in: Advances in Neural Information Processing Systems, 2014, pp. 3104\u20133112."},{"key":"10.1016\/j.neucom.2015.09.096_bib26","doi-asserted-by":"crossref","unstructured":"A. Graves, A.-R. Mohamed, G. Hinton, Speech recognition with deep recurrent neural networks, in: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2013, pp. 6645\u20136649.","DOI":"10.1109\/ICASSP.2013.6638947"},{"key":"10.1016\/j.neucom.2015.09.096_bib27","unstructured":"L. Shang, Z. Lu, H. Li, Neural responding machine for short-text conversation, arxiv:hepth\/1503.02364."},{"issue":"8","key":"10.1016\/j.neucom.2015.09.096_bib28","doi-asserted-by":"crossref","first-page":"1388","DOI":"10.1111\/j.1551-6709.2010.01106.x","article-title":"Composition in distributional models of semantics","volume":"34","author":"Mitchell","year":"2010","journal-title":"Cognit. Sci."},{"key":"10.1016\/j.neucom.2015.09.096_bib29","unstructured":"A. Yessenalina, C. Cardie, Compositional matrix-space models for sentiment analysis, in: Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2011, pp. 172\u2013182."},{"key":"10.1016\/j.neucom.2015.09.096_bib30","doi-asserted-by":"crossref","unstructured":"Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition, Proc. IEEE 86 (11) (1998) 2278\u20132324.","DOI":"10.1109\/5.726791"},{"key":"10.1016\/j.neucom.2015.09.096_bib31","unstructured":"J. Turian, L. Ratinov, Y. Bengio, Word representations: a simple and general method for semi-supervised learning, in: Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, Association for Computational Linguistics, 2010, pp. 384\u2013394."},{"key":"10.1016\/j.neucom.2015.09.096_bib32","first-page":"2121","article-title":"Adaptive subgradient methods for online learning and stochastic optimization","volume":"12","author":"Duchi","year":"2011","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.neucom.2015.09.096_bib33","doi-asserted-by":"crossref","unstructured":"J. Pennington, R. Socher, C.D. Manning, Glove: global vectors for word representation, in: Proceedings of the Empiricial Methods in Natural Language Processing 12, 2014, pp. 1532\u20131543.","DOI":"10.3115\/v1\/D14-1162"},{"issue":"2","key":"10.1016\/j.neucom.2015.09.096_bib34","doi-asserted-by":"crossref","first-page":"137","DOI":"10.1007\/s10462-010-9188-4","article-title":"From symbolic to sub-symbolic information in question classification","volume":"35","author":"Silva","year":"2011","journal-title":"Artif. Intell. Rev."},{"key":"10.1016\/j.neucom.2015.09.096_bib35","doi-asserted-by":"crossref","first-page":"763","DOI":"10.2307\/3802789","article-title":"The insignificance of statistical significance testing","author":"Johnson","year":"1999","journal-title":"J. Wildl. Manag."}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231215014502?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231215014502?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,5,23]],"date-time":"2022-05-23T13:47:09Z","timestamp":1653313629000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231215014502"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2016,1]]},"references-count":35,"alternative-id":["S0925231215014502"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2015.09.096","relation":{},"ISSN":["0925-2312"],"issn-type":[{"value":"0925-2312","type":"print"}],"subject":[],"published":{"date-parts":[[2016,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Semantic expansion using word embedding clustering and convolutional neural network for improving short text classification","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2015.09.096","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"Copyright \u00a9 2015 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}