{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T06:03:23Z","timestamp":1740117803102,"version":"3.37.3"},"reference-count":25,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2015,8,1]],"date-time":"2015-08-01T00:00:00Z","timestamp":1438387200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["51006052"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2015,8]]},"DOI":"10.1016\/j.neucom.2015.02.037","type":"journal-article","created":{"date-parts":[[2015,3,5]],"date-time":"2015-03-05T12:16:29Z","timestamp":1425557789000},"page":"243-253","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":14,"special_numbering":"C","title":["Householder transformation based sparse least squares support vector regression"],"prefix":"10.1016","volume":"161","author":[{"given":"Yong-Ping","family":"Zhao","sequence":"first","affiliation":[]},{"given":"Bing","family":"Li","sequence":"additional","affiliation":[]},{"given":"Ye-Bo","family":"Li","sequence":"additional","affiliation":[]},{"given":"Kang-Kang","family":"Wang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"year":"1995","series-title":"The Nature of Statistical Learning Theory","author":"Vapnik","key":"10.1016\/j.neucom.2015.02.037_bib1"},{"issue":"5","key":"10.1016\/j.neucom.2015.02.037_bib2","doi-asserted-by":"crossref","first-page":"988","DOI":"10.1109\/72.788640","article-title":"An overview of statistical learning theory","volume":"10","author":"Vapnik","year":"1999","journal-title":"IEEE Trans. Neural Netw."},{"issue":"3","key":"10.1016\/j.neucom.2015.02.037_bib3","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1007\/BF00994018","article-title":"Support-vector networks","volume":"20","author":"Cortes","year":"1995","journal-title":"Mach. Learn."},{"issue":"3","key":"10.1016\/j.neucom.2015.02.037_bib4","doi-asserted-by":"crossref","first-page":"199","DOI":"10.1023\/B:STCO.0000035301.49549.88","article-title":"A tutorial on support vector regression","volume":"14","author":"Smola","year":"2004","journal-title":"Stat. Comput."},{"issue":"3","key":"10.1016\/j.neucom.2015.02.037_bib5","doi-asserted-by":"crossref","first-page":"293","DOI":"10.1023\/A:1018628609742","article-title":"Least squares support vector machine classifiers","volume":"9","author":"Suykens","year":"1999","journal-title":"Neural Process. Lett."},{"year":"2002","series-title":"Least Squares Support Vector Machines","author":"Suykens","key":"10.1016\/j.neucom.2015.02.037_bib6"},{"key":"10.1016\/j.neucom.2015.02.037_bib7","doi-asserted-by":"crossref","first-page":"85","DOI":"10.1016\/S0925-2312(01)00644-0","article-title":"Weighted least squares support vector machines","volume":"48","author":"Suykens","year":"2002","journal-title":"Neurocomputing"},{"issue":"1","key":"10.1016\/j.neucom.2015.02.037_bib8","doi-asserted-by":"crossref","first-page":"298","DOI":"10.1109\/TSMCB.2008.2005124","article-title":"A new rbf neural network with boundary value constraints","volume":"39","author":"Hong","year":"2009","journal-title":"IEEE Trans. Syst. Man Cybern. Part B: Cybern."},{"key":"10.1016\/j.neucom.2015.02.037_bib9","doi-asserted-by":"crossref","unstructured":"J.A.K. Suykens, L. Lukas, J. Vandewalle, Sparse approximation using least squares support vector machines, in: The 2000 IEEE International Symposium on Circuits and Systems, vol. 2, 2000, pp. 757\u2013760.","DOI":"10.1109\/ISCAS.2000.856439"},{"issue":"3","key":"10.1016\/j.neucom.2015.02.037_bib10","doi-asserted-by":"crossref","first-page":"696","DOI":"10.1109\/TNN.2003.810597","article-title":"Pruning error minimization in least squares support vector machines","volume":"14","author":"De Kruif","year":"2003","journal-title":"IEEE Trans. Neural Netw."},{"issue":"2","key":"10.1016\/j.neucom.2015.02.037_bib11","doi-asserted-by":"crossref","first-page":"606","DOI":"10.1109\/TNN.2007.891590","article-title":"Comments on \u201cpruning error minimization in least squares support vector machines\u201d","volume":"18","author":"Kuh","year":"2007","journal-title":"IEEE Trans. Neural Netw."},{"issue":"6","key":"10.1016\/j.neucom.2015.02.037_bib12","doi-asserted-by":"crossref","first-page":"1541","DOI":"10.1109\/TNN.2005.852239","article-title":"Smo-based pruning methods for sparse least squares support vector machines","volume":"16","author":"Zeng","year":"2005","journal-title":"IEEE Trans. Neural Netw."},{"issue":"6","key":"10.1016\/j.neucom.2015.02.037_bib13","doi-asserted-by":"crossref","first-page":"1449","DOI":"10.1109\/TNN.2003.820828","article-title":"A study of reduced support vector machines","volume":"14","author":"Lin","year":"2003","journal-title":"IEEE Trans. Neural Netw."},{"issue":"January (1)","key":"10.1016\/j.neucom.2015.02.037_bib14","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/TNN.2006.883722","article-title":"Reduced support vector machines","volume":"18","author":"Lee","year":"2007","journal-title":"IEEE Trans. Neural Netw."},{"issue":"3","key":"10.1016\/j.neucom.2015.02.037_bib15","doi-asserted-by":"crossref","first-page":"685","DOI":"10.1109\/TNN.2006.889500","article-title":"Fast sparse approximation for least squares support vector machine","volume":"18","author":"Jiao","year":"2007","journal-title":"IEEE Trans. Neural Netw."},{"key":"10.1016\/j.neucom.2015.02.037_bib16","doi-asserted-by":"crossref","unstructured":"X.-L. Xia, W. Jiao, K. Li, G. Irwin, A novel sparse least squares support vector machines, Math. Probl. Eng. 2013 (2013). [Online]. Available: \u3008http:\/\/dx.doi.org\/10.1155\/2013\/602341\u3009.","DOI":"10.1155\/2013\/602341"},{"key":"10.1016\/j.neucom.2015.02.037_bib17","doi-asserted-by":"crossref","unstructured":"M. Espinoza, J.A.K. Suykens, B. De Moor, Load forecasting using fixed-size least squares support vector machines, in: Proceedings of the 8th International Conference on Artificial Neural Networks: Computational Intelligence and Bioinspired Systems, Springer-Verlag, Berlin, Heidelberg, 2005, pp. 1018\u20131026.","DOI":"10.1007\/11494669_125"},{"issue":"6","key":"10.1016\/j.neucom.2015.02.037_bib18","doi-asserted-by":"crossref","first-page":"1484","DOI":"10.1016\/j.csda.2010.01.024","article-title":"Optimized fixed-size kernel models for large data sets","volume":"54","author":"De Brabanter","year":"2010","journal-title":"Comput. Stat. Data Anal."},{"key":"10.1016\/j.neucom.2015.02.037_bib19","first-page":"161","article-title":"Sparse reductions for fixed-size least squares support vector machines on large scale","volume":"vol. 7818","author":"Mall","year":"2013"},{"issue":"October (4)","key":"10.1016\/j.neucom.2015.02.037_bib20","doi-asserted-by":"crossref","first-page":"339","DOI":"10.1145\/320941.320947","article-title":"Unitary triangularization of a nonsymmetric matrix","volume":"5","author":"Householder","year":"1958","journal-title":"J. ACM"},{"issue":"April (1)","key":"10.1016\/j.neucom.2015.02.037_bib21","doi-asserted-by":"crossref","first-page":"33","DOI":"10.1137\/S0895479898338561","article-title":"Householder transformations revisited","volume":"22","author":"Dubrulle","year":"2000","journal-title":"SIAM J. Matrix Anal. Appl."},{"issue":"5","key":"10.1016\/j.neucom.2015.02.037_bib22","doi-asserted-by":"crossref","first-page":"1873","DOI":"10.1080\/00207178908953472","article-title":"Orthogonal least squares methods and their application to non-linear system identification","volume":"50","author":"Chen","year":"1989","journal-title":"Int. J. Control"},{"key":"10.1016\/j.neucom.2015.02.037_bib23","doi-asserted-by":"crossref","first-page":"67","DOI":"10.1016\/j.neunet.2013.12.003","article-title":"Lagrangian support vector regression via unconstrained convex minimization","volume":"51","author":"Balasundaram","year":"2014","journal-title":"Neural Netw."},{"issue":"8","key":"10.1016\/j.neucom.2015.02.037_bib24","doi-asserted-by":"crossref","first-page":"2154","DOI":"10.1016\/j.patcog.2006.12.015","article-title":"Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression","volume":"40","author":"An","year":"2007","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.neucom.2015.02.037_bib25","doi-asserted-by":"crossref","unstructured":"Z. Ying, K.C. Keong, Fast leave-one-out evaluation and improvement on inference for ls-svms, in: Proceedings of International Conference on Pattern Recognition, vol. 3, Cambridge, United Kingdom, 2004, pp. 494\u2013497. [Online]. Available: \u3008http:\/\/dx.doi.org\/10.1109\/ICPR.2004.1334574\u3009","DOI":"10.1109\/ICPR.2004.1334574"}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231215001861?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231215001861?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,8,21]],"date-time":"2019-08-21T14:00:39Z","timestamp":1566396039000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231215001861"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2015,8]]},"references-count":25,"alternative-id":["S0925231215001861"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2015.02.037","relation":{},"ISSN":["0925-2312"],"issn-type":[{"type":"print","value":"0925-2312"}],"subject":[],"published":{"date-parts":[[2015,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Householder transformation based sparse least squares support vector regression","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2015.02.037","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"Copyright \u00a9 2015 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}