{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,9]],"date-time":"2024-09-09T12:03:50Z","timestamp":1725883430820},"reference-count":83,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2015,2,1]],"date-time":"2015-02-01T00:00:00Z","timestamp":1422748800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2015,2]]},"DOI":"10.1016\/j.neucom.2014.07.057","type":"journal-article","created":{"date-parts":[[2014,8,12]],"date-time":"2014-08-12T13:17:49Z","timestamp":1407849469000},"page":"767-776","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":31,"special_numbering":"PB","title":["A Projection Pursuit framework for supervised dimension reduction of high dimensional small sample datasets"],"prefix":"10.1016","volume":"149","author":[{"given":"Soledad","family":"Espezua","sequence":"first","affiliation":[]},{"given":"Edwin","family":"Villanueva","sequence":"additional","affiliation":[]},{"given":"Carlos D.","family":"Maciel","sequence":"additional","affiliation":[]},{"given":"Andr\u00e9","family":"Carvalho","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"1906","key":"10.1016\/j.neucom.2014.07.057_bib1","doi-asserted-by":"crossref","first-page":"4237","DOI":"10.1098\/rsta.2009.0159","article-title":"Statistical challenges of high-dimensional data INTRODUCTION","volume":"367","author":"Johnstone","year":"2009","journal-title":"Philos. Trans. R. Soc. A\u2014Math. Phys. Eng. Sci."},{"key":"10.1016\/j.neucom.2014.07.057_bib2","series-title":"Microarray Technology in Practice","author":"Russell","year":"2008"},{"key":"10.1016\/j.neucom.2014.07.057_bib3","doi-asserted-by":"crossref","first-page":"531","DOI":"10.1126\/science.286.5439.531","article-title":"Molecular classification of cancer","volume":"286","author":"Golub","year":"1999","journal-title":"Science"},{"issue":"S","key":"10.1016\/j.neucom.2014.07.057_bib4","doi-asserted-by":"crossref","first-page":"S38","DOI":"10.1038\/ng1561","article-title":"From signatures to models","volume":"37","author":"Segal","year":"2005","journal-title":"Nat. Genet."},{"issue":"6","key":"10.1016\/j.neucom.2014.07.057_bib5","doi-asserted-by":"crossref","first-page":"2653","DOI":"10.1109\/36.803413","article-title":"Hyperspectral data analysis and supervised feature reduction via projection pursuit","volume":"37","author":"Jimenez","year":"1999","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"1","key":"10.1016\/j.neucom.2014.07.057_bib6","doi-asserted-by":"crossref","first-page":"37","DOI":"10.1038\/nrc2294","article-title":"The properties of high-dimensional data spaces","volume":"8","author":"Clarke","year":"2008","journal-title":"Nat. Rev. Cancer"},{"issue":"1","key":"10.1016\/j.neucom.2014.07.057_bib7","doi-asserted-by":"crossref","first-page":"96","DOI":"10.1109\/69.908983","article-title":"On the \u201cdimensionality curse\u201d and the \u201cself-similarity blessing\u201d","volume":"13","author":"Korn","year":"2001","journal-title":"IEEE Trans. Knowl. Data Eng."},{"issue":"4","key":"10.1016\/j.neucom.2014.07.057_bib8","doi-asserted-by":"crossref","first-page":"491","DOI":"10.1109\/TKDE.2005.66","article-title":"Toward integrating feature selection algorithms for classification and clustering","volume":"17","author":"Liu","year":"2005","journal-title":"IEEE Trans. Knowl. Data Eng."},{"issue":"19","key":"10.1016\/j.neucom.2014.07.057_bib9","doi-asserted-by":"crossref","first-page":"2507","DOI":"10.1093\/bioinformatics\/btm344","article-title":"A review of feature selection techniques in bioinformatics","volume":"23","author":"Saeys","year":"2007","journal-title":"Bioinformatics"},{"key":"10.1016\/j.neucom.2014.07.057_bib10","series-title":"Feature Extraction, Foundations and Applications","year":"2006"},{"key":"10.1016\/j.neucom.2014.07.057_bib11","doi-asserted-by":"crossref","unstructured":"C.J.C. Burges, Dimension reduction: a guided tour, Found. Trends Mach. Learn., Now Publishers Inc., Hanover, MA, USA, 2 (4).","DOI":"10.1561\/2200000002"},{"key":"10.1016\/j.neucom.2014.07.057_bib12","series-title":"Feature Extraction, Construction and Selection","author":"Liu","year":"1998"},{"issue":"9","key":"10.1016\/j.neucom.2014.07.057_bib13","doi-asserted-by":"crossref","first-page":"881","DOI":"10.1109\/T-C.1974.224051","article-title":"A projection pursuit algorithm for exploratory data analysis","volume":"23","author":"Friedman","year":"1974","journal-title":"IEEE Trans. Comput."},{"issue":"397","key":"10.1016\/j.neucom.2014.07.057_bib14","doi-asserted-by":"crossref","first-page":"249","DOI":"10.1080\/01621459.1987.10478427","article-title":"Exploratory projection pursuit","volume":"82","author":"Friedman","year":"1987","journal-title":"Am. Stat. Assoc."},{"issue":"6","key":"10.1016\/j.neucom.2014.07.057_bib15","doi-asserted-by":"crossref","first-page":"415","DOI":"10.4236\/jwarp.2011.36051","article-title":"Projection pursuit flood disaster classification assessment method based on multi-swarm cooperative particle swarm optimization","volume":"3","author":"Huang","year":"2011","journal-title":"J. Water Resour. Prot."},{"issue":"5","key":"10.1016\/j.neucom.2014.07.057_bib16","doi-asserted-by":"crossref","first-page":"2474","DOI":"10.4236\/jwarp.2010.25051","article-title":"Projection pursuit dynamic cluster model and its application to water resources carrying capacity evaluation","volume":"2","author":"Wang","year":"2010","journal-title":"J. Water Resour. Prot."},{"key":"10.1016\/j.neucom.2014.07.057_bib17","doi-asserted-by":"crossref","first-page":"3313","DOI":"10.1016\/j.patcog.2008.04.014","article-title":"A projection pursuit algorithm for anomaly detection in hyperspectral imagery","volume":"41","author":"Malpica","year":"2008","journal-title":"Pattern Recognit."},{"issue":"20","key":"10.1016\/j.neucom.2014.07.057_bib18","doi-asserted-by":"crossref","first-page":"3852","DOI":"10.1093\/bioinformatics\/bti640","article-title":"Detecting single-feature polymorphisms using oligonucleotide arrays and robustified projection pursuit","volume":"21","author":"Cui","year":"2005","journal-title":"Bioinformatics"},{"issue":"456","key":"10.1016\/j.neucom.2014.07.057_bib19","doi-asserted-by":"crossref","first-page":"1433","DOI":"10.1198\/016214501753382345","article-title":"Cluster identification using projections","volume":"96","author":"Pena","year":"2001","journal-title":"J. Am. Stat. Assoc."},{"issue":"1","key":"10.1016\/j.neucom.2014.07.057_bib20","doi-asserted-by":"crossref","first-page":"121","DOI":"10.1198\/1061860031374","article-title":"Projection pursuit clustering for exploratory data analysis","volume":"12","author":"Bolton","year":"2003","journal-title":"J. Comput. Graph. Stat."},{"issue":"4","key":"10.1016\/j.neucom.2014.07.057_bib21","doi-asserted-by":"crossref","first-page":"831","DOI":"10.1198\/106186005X77702","article-title":"Projection pursuit for exploratory supervised classification","volume":"14","author":"Lee","year":"2005","journal-title":"J. Comput. Graph. Stat."},{"issue":"4","key":"10.1016\/j.neucom.2014.07.057_bib22","doi-asserted-by":"crossref","first-page":"1774","DOI":"10.1016\/j.neuroimage.2007.10.012","article-title":"A projection pursuit algorithm to classify individuals using fMRI data: application to schizophrenia","volume":"39","author":"Demirci","year":"2008","journal-title":"Neuroimage"},{"issue":"10","key":"10.1016\/j.neucom.2014.07.057_bib23","doi-asserted-by":"crossref","first-page":"2464","DOI":"10.1016\/j.jmva.2010.06.017","article-title":"Projection-pursuit approach to robust linear discriminant analysis","volume":"101","author":"Pires","year":"2010","journal-title":"J. Multivar. Anal."},{"key":"10.1016\/j.neucom.2014.07.057_bib24","first-page":"89","article-title":"Fast projection pursuit based on quality of projected clusters","volume":"vol. 6594","author":"Grochowski","year":"2011"},{"issue":"1","key":"10.1016\/j.neucom.2014.07.057_bib25","doi-asserted-by":"crossref","first-page":"150","DOI":"10.1016\/j.aca.2007.02.058","article-title":"Prediction of ozone tropospheric degradation rate constants by projection pursuit regression","volume":"589","author":"Ren","year":"2007","journal-title":"Anal. Chim. Acta"},{"issue":"11","key":"10.1016\/j.neucom.2014.07.057_bib26","doi-asserted-by":"crossref","first-page":"4376","DOI":"10.1109\/TSP.2005.857007","article-title":"Projection pursuit mixture density estimation","volume":"53","author":"Aladjem","year":"2005","journal-title":"IEEE Trans. Signal Process."},{"issue":"2","key":"10.1016\/j.neucom.2014.07.057_bib27","doi-asserted-by":"crossref","first-page":"208","DOI":"10.1002\/wics.23","article-title":"Projection pursuit","volume":"1","author":"Jee","year":"2009","journal-title":"Wiley Interdiscip. Rev.: Comput. Stat."},{"issue":"8","key":"10.1016\/j.neucom.2014.07.057_bib28","doi-asserted-by":"crossref","first-page":"1281","DOI":"10.1109\/TNN.2010.2051161","article-title":"Automatic induction of projection pursuit indices","volume":"21","author":"Rodriguez-Martinez","year":"2010","journal-title":"IEEE Trans. Neural Netw."},{"issue":"2","key":"10.1016\/j.neucom.2014.07.057_bib29","doi-asserted-by":"crossref","first-page":"435","DOI":"10.1214\/aos\/1176349519","article-title":"Projection pursuit","volume":"13","author":"Huber","year":"1985","journal-title":"Ann. Stat."},{"issue":"1","key":"10.1016\/j.neucom.2014.07.057_bib30","doi-asserted-by":"crossref","first-page":"1","DOI":"10.2307\/2981662","article-title":"What is projection pursuit?","volume":"150","author":"Jones","year":"1987","journal-title":"J. R. Stat. Soc. Ser. A: General"},{"key":"10.1016\/j.neucom.2014.07.057_bib31","first-page":"411","article-title":"Three-dimensional projection pursuit","volume":"44","author":"Nason","year":"1995","journal-title":"J. R. Stat. Soc. Ser. C"},{"issue":"13","key":"10.1016\/j.neucom.2014.07.057_bib32","doi-asserted-by":"crossref","first-page":"2846","DOI":"10.1021\/ac0000123","article-title":"Sequential projection pursuit using genetic algorithms for data mining of analytical data","volume":"72","author":"Guo","year":"2000","journal-title":"Anal. Chem."},{"key":"10.1016\/j.neucom.2014.07.057_bib33","doi-asserted-by":"crossref","first-page":"40","DOI":"10.1016\/j.neucom.2012.09.045","article-title":"Towards an efficient genetic algorithm optimizer for sequential projection pursuit","volume":"123","author":"Espezua","year":"2014","journal-title":"Neurocomputing"},{"issue":"1\u20132","key":"10.1016\/j.neucom.2014.07.057_bib34","doi-asserted-by":"crossref","first-page":"149","DOI":"10.1016\/j.chemolab.2004.09.014","article-title":"An improved optimization algorithm and Bayes factor termination criterion for sequential projection pursuit","volume":"77","author":"Webb-Robertson","year":"2005","journal-title":"Chemom. Intell. Lab. Syst."},{"issue":"1\u20132, SI","key":"10.1016\/j.neucom.2014.07.057_bib35","doi-asserted-by":"crossref","first-page":"153","DOI":"10.1007\/s10472-010-9211-0","article-title":"Genetic algorithms and particle swarm optimization for exploratory projection pursuit","volume":"60","author":"Berro","year":"2010","journal-title":"Ann. Math. Artif. Intell."},{"key":"10.1016\/j.neucom.2014.07.057_bib36","doi-asserted-by":"crossref","first-page":"427","DOI":"10.1016\/B978-0-12-498150-8.50024-0","article-title":"Toward a practical method which helps uncover the structure of a set of multivariate observations by finding the linear transformation which optimizes a new \u201cIndex of Condensation\u201d","author":"Kruskal","year":"1969","journal-title":"Stat. Comput."},{"key":"10.1016\/j.neucom.2014.07.057_bib37","unstructured":"G. Nason, Design and choice of projection indices (Ph.D. thesis), University of Bath, 1992."},{"key":"10.1016\/j.neucom.2014.07.057_bib38","doi-asserted-by":"crossref","first-page":"669","DOI":"10.1016\/0167-9473(95)00002-8","article-title":"Projection pursuit exploratory data analysis","volume":"20","author":"Posse","year":"1995","journal-title":"Comput. Stat. Data Anal."},{"issue":"2","key":"10.1016\/j.neucom.2014.07.057_bib39","doi-asserted-by":"crossref","first-page":"83","DOI":"10.1080\/10618600.1995.10474668","article-title":"Tools for two-dimensional exploratory projection pursuit","volume":"4","author":"Posse","year":"1995","journal-title":"J. Comput. Graph. Stat."},{"key":"10.1016\/j.neucom.2014.07.057_bib40","doi-asserted-by":"crossref","unstructured":"S.L. Marie-Sainte, A. Berro, A. Ruiz-Gazen, An efficient optimization method for revealing local optima of projection pursuit indices, in: ANTS Conference, 2010, pp. 60\u201371.","DOI":"10.1007\/978-3-642-15461-4_6"},{"issue":"1","key":"10.1016\/j.neucom.2014.07.057_bib41","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1109\/LSP.2005.860541","article-title":"Dimension reduction as a deflation method in ICA","volume":"13","author":"Zhang","year":"2006","journal-title":"IEEE Sign. Process. Lett."},{"issue":"3","key":"10.1016\/j.neucom.2014.07.057_bib42","doi-asserted-by":"crossref","first-page":"700","DOI":"10.1198\/106186005X69440","article-title":"Projection pursuit indices based on the empirical distribution function","volume":"14","author":"Perisic","year":"2005","journal-title":"J. Comput. Graph. Stat."},{"issue":"3","key":"10.1016\/j.neucom.2014.07.057_bib43","doi-asserted-by":"crossref","first-page":"225","DOI":"10.2307\/1390644","article-title":"Projection pursuit indexes based on orthonormal function expansions","volume":"2","author":"Cook","year":"1993","journal-title":"J. Comput. Graph. Stat."},{"key":"10.1016\/j.neucom.2014.07.057_bib44","doi-asserted-by":"crossref","unstructured":"M. Grochowski, W. Duch, Projection pursuit constructive neural networks based on quality of projected clusters, in: V. Kurkova, R. Neruda, J. Koutnik (Eds.), Artificial Neural Networks\u2014ICANN 2008, PT II, Lecture Notes In Computer Science, vol. 5164, 2008, pp. 754\u2013762.","DOI":"10.1007\/978-3-540-87559-8_78"},{"issue":"3","key":"10.1016\/j.neucom.2014.07.057_bib45","doi-asserted-by":"crossref","first-page":"381","DOI":"10.1007\/s11222-009-9131-1","article-title":"A projection pursuit index for large p small n data","volume":"20","author":"Lee","year":"2010","journal-title":"Stat. Comput."},{"key":"10.1016\/j.neucom.2014.07.057_bib46","doi-asserted-by":"crossref","first-page":"817","DOI":"10.1080\/01621459.1981.10477729","article-title":"Projection pursuit regression","volume":"76","author":"Friedman","year":"1981","journal-title":"J. Am. Stat. Assoc."},{"issue":"2","key":"10.1016\/j.neucom.2014.07.057_bib47","doi-asserted-by":"crossref","first-page":"573","DOI":"10.1214\/aos\/1176347126","article-title":"On projection pursuit regression","volume":"17","author":"Hall","year":"1989","journal-title":"Ann. Stat."},{"key":"10.1016\/j.neucom.2014.07.057_bib48","unstructured":"J. Goldberger, S. Roweis, G. Hinton, R. Salakhutdinov, Neighbourhood components analysis, in: Advances in Neural Information Processing Systems, vol. 17, 2005, pp. 513\u2013520."},{"key":"10.1016\/j.neucom.2014.07.057_bib49","doi-asserted-by":"crossref","first-page":"31","DOI":"10.1016\/j.neucom.2011.10.021","article-title":"Fast neighborhood component analysis","volume":"83","author":"Yang","year":"2012","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2014.07.057_bib50","doi-asserted-by":"crossref","unstructured":"H.V. Nguyen, L. Bai, Face verification using indirect neighbourhood components analysis, in: Proceedings of the 6th International Conference on Advances in Visual Computing\u2014Volume Part II, ISVC\u05f310, Springer-Verlag, Berlin, Heidelberg, 2010, pp. 637\u2013646.","DOI":"10.1007\/978-3-642-17274-8_62"},{"key":"10.1016\/j.neucom.2014.07.057_bib51","doi-asserted-by":"crossref","unstructured":"A. Khandelwal, P. Choudhury, R. Sarkar, S. Basu, M. Nasipuri, N. Das, Text line segmentation for unconstrained handwritten document images using neighborhood connected component analysis, in: Proceedings of the 3rd International Conference on Pattern Recognition and Machine Intelligence, PReMI \u05f309, Springer-Verlag, Berlin, Heidelberg, 2009, pp. 369\u2013374.","DOI":"10.1007\/978-3-642-11164-8_60"},{"key":"10.1016\/j.neucom.2014.07.057_bib52","doi-asserted-by":"crossref","first-page":"328","DOI":"10.1109\/TPAMI.2005.55","article-title":"Face recognition using Laplacianfaces","volume":"27","author":"He","year":"2005","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"5","key":"10.1016\/j.neucom.2014.07.057_bib53","doi-asserted-by":"crossref","first-page":"896","DOI":"10.1109\/TPAMI.2007.1074","article-title":"Equivalence of some common linear feature extraction techniques for appearance-based object recognition tasks","volume":"29","author":"Asuncion Vicente","year":"2007","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"12","key":"10.1016\/j.neucom.2014.07.057_bib54","doi-asserted-by":"crossref","first-page":"4438","DOI":"10.1016\/j.patcog.2012.06.010","article-title":"The small sample size problem of ICA","volume":"45","author":"Deng","year":"2012","journal-title":"Pattern Recognit."},{"issue":"1","key":"10.1016\/j.neucom.2014.07.057_bib55","doi-asserted-by":"crossref","first-page":"244","DOI":"10.1186\/1471-2105-9-244","article-title":"Mapping gene expression quantitative trait loci by singular value decomposition and independent component analysis","volume":"9","author":"Biswas","year":"2008","journal-title":"BMC Bioinform."},{"key":"10.1016\/j.neucom.2014.07.057_bib56","unstructured":"P. Cunningham, Dimension Reduction, Technical Report, 2007."},{"issue":"6","key":"10.1016\/j.neucom.2014.07.057_bib57","doi-asserted-by":"crossref","first-page":"489","DOI":"10.1007\/s11517-006-0055-z","article-title":"Noise reduction in magnetocardiography by singular value decomposition and independent component analysis","volume":"44","author":"DiPietroPaolo","year":"2006","journal-title":"Med. Biol. Eng. Comput."},{"issue":"21","key":"10.1016\/j.neucom.2014.07.057_bib58","doi-asserted-by":"crossref","first-page":"2635","DOI":"10.1093\/bioinformatics\/btl442","article-title":"Eigengene-based linear discriminant model for tumor classification using gene expression microarray data","volume":"22","author":"Shen","year":"2006","journal-title":"Bioinformatics"},{"issue":"6","key":"10.1016\/j.neucom.2014.07.057_bib59","doi-asserted-by":"crossref","first-page":"3351","DOI":"10.1073\/pnas.0530258100","article-title":"Generalized singular value decomposition for comparative analysis of genome-scale expression data sets of two different organisms","volume":"100","author":"Alter","year":"2003","journal-title":"Proc. Natl. Acad. Sci."},{"key":"10.1016\/j.neucom.2014.07.057_bib60","doi-asserted-by":"crossref","unstructured":"M. Wall, A. Rechtsteiner, L. Rocha, Singular value decomposition and principal component analysis, in: A Practical Approach to Microarray Data Analysis, 2003, pp. 91\u2013109.","DOI":"10.1007\/0-306-47815-3_5"},{"issue":"18","key":"10.1016\/j.neucom.2014.07.057_bib61","doi-asserted-by":"crossref","first-page":"10101","DOI":"10.1073\/pnas.97.18.10101","article-title":"Singular value decomposition for genome-wide expression data processing and modeling","volume":"97","author":"Alter","year":"2000","journal-title":"Proc. Natl. Acad. Sci."},{"key":"10.1016\/j.neucom.2014.07.057_bib62","series-title":"Principal Component Analysis","author":"Jolliffe","year":"1986"},{"issue":"6","key":"10.1016\/j.neucom.2014.07.057_bib63","doi-asserted-by":"crossref","first-page":"939","DOI":"10.1142\/S0219720009004412","article-title":"Dimension reduction of microarray gene expression data","volume":"7","author":"Nguyen","year":"2009","journal-title":"J. Bioinform. Comput. Biol."},{"key":"10.1016\/j.neucom.2014.07.057_bib64","unstructured":"R. Rosipal, N. Krmer, Overview and recent advances in partial least squares, in: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 3940, 2006, pp. 34\u201351, cited by (since 1996)132."},{"issue":"12","key":"10.1016\/j.neucom.2014.07.057_bib65","doi-asserted-by":"crossref","first-page":"2050","DOI":"10.1109\/TNN.2011.2170220","article-title":"Classifiability-based discriminatory projection pursuit","volume":"22","author":"Su","year":"2011","journal-title":"IEEE Trans. Neural Netw."},{"issue":"6870","key":"10.1016\/j.neucom.2014.07.057_bib66","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1038\/415436a","article-title":"Prediction of central nervous system embryonal tumour outcome based on gene expression","volume":"415","author":"Pomeroy","year":"2002","journal-title":"Nature"},{"key":"10.1016\/j.neucom.2014.07.057_bib67","first-page":"1602","article-title":"Gene expression-based classification of malignant gliomas correlates better with survival than histological classification","volume":"63","author":"Nutt","year":"2003","journal-title":"Cancer Res."},{"issue":"12","key":"10.1016\/j.neucom.2014.07.057_bib68","doi-asserted-by":"crossref","first-page":"6745","DOI":"10.1073\/pnas.96.12.6745","article-title":"Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays","volume":"96","author":"Alon","year":"1999","journal-title":"Proc. Natl. Acad. Sci. USA"},{"issue":"1","key":"10.1016\/j.neucom.2014.07.057_bib69","doi-asserted-by":"crossref","first-page":"68","DOI":"10.1038\/nm0102-68","article-title":"Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning","volume":"8","author":"Shipp","year":"2002","journal-title":"Nat. Med."},{"key":"10.1016\/j.neucom.2014.07.057_bib70","doi-asserted-by":"crossref","first-page":"41","DOI":"10.1038\/ng765","article-title":"MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia","volume":"30","author":"Armstrong","year":"2002","journal-title":"Nat. Genet."},{"issue":"2","key":"10.1016\/j.neucom.2014.07.057_bib71","doi-asserted-by":"crossref","first-page":"203","DOI":"10.1016\/S1535-6108(02)00030-2","article-title":"Gene expression correlates of clinical prostate cancer behavior","volume":"1","author":"Singh","year":"2002","journal-title":"Cancer Cell"},{"issue":"6","key":"10.1016\/j.neucom.2014.07.057_bib72","doi-asserted-by":"crossref","first-page":"673","DOI":"10.1038\/89044","article-title":"Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks","volume":"7","author":"Khan","year":"2001","journal-title":"Nat. Med."},{"issue":"7309","key":"10.1016\/j.neucom.2014.07.057_bib73","doi-asserted-by":"crossref","first-page":"973","DOI":"10.1038\/nature09247","article-title":"An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis","volume":"466","author":"Berry","year":"2010","journal-title":"Nature"},{"issue":"457","key":"10.1016\/j.neucom.2014.07.057_bib74","doi-asserted-by":"crossref","first-page":"77","DOI":"10.1198\/016214502753479248","article-title":"Comparison of discrimination methods for the classification of tumors using gene expression data","volume":"97","author":"Dudoit","year":"2002","journal-title":"J. Am. Stat. Assoc."},{"key":"10.1016\/j.neucom.2014.07.057_bib75","series-title":"Pattern Recognition and Machine Learning (Information Science and Statistics)","author":"Bishop","year":"2006"},{"key":"10.1016\/j.neucom.2014.07.057_bib76","unstructured":"MATLAB, version 7.10.0 (R2010a), The MathWorks Inc., 2010."},{"key":"10.1016\/j.neucom.2014.07.057_bib77","doi-asserted-by":"crossref","first-page":"2323","DOI":"10.1126\/science.290.5500.2323","article-title":"Nonlinear dimensionality reduction by locally linear embedding","volume":"290","author":"Roweis","year":"2000","journal-title":"Science"},{"issue":"3","key":"10.1016\/j.neucom.2014.07.057_bib78","doi-asserted-by":"crossref","first-page":"590","DOI":"10.1198\/106186008X345161","article-title":"Kernel sliced inverse regression with applications to classification","volume":"17","author":"Wu","year":"2008","journal-title":"J. Comput. Graph. Stat."},{"issue":"3\u20134","key":"10.1016\/j.neucom.2014.07.057_bib79","doi-asserted-by":"crossref","first-page":"242","DOI":"10.1016\/S1672-0229(08)60011-X","article-title":"A modified T-test feature selection method and its application on the hapmap genotype data","volume":"5","author":"Zhou","year":"2007","journal-title":"Genomics Proteomics Bioinform."},{"key":"10.1016\/j.neucom.2014.07.057_bib80","series-title":"European Conference on Machine Learning","first-page":"171","article-title":"Estimating attributes: analysis and extensions of RELIEF","author":"Kononenko","year":"1994"},{"key":"10.1016\/j.neucom.2014.07.057_bib81","unstructured":"L. van der Maaten, E.O. Postma, H.J. van den Herik, Dimensionality Reduction: A Comparative Review, Technical Report, Tilburg University, 2009."},{"key":"10.1016\/j.neucom.2014.07.057_bib82","unstructured":"I.H. Witten, E. Frank, L. Trigg, M. Hall, G. Holmes, S.J. Cunningham, Weka: Practical Machine Learning Tools and Techniques with Java Implementations, http:\/\/www.cs.waikato.ac.nz\/ml\/weka\/, 1999."},{"issue":"3","key":"10.1016\/j.neucom.2014.07.057_bib83","doi-asserted-by":"crossref","first-page":"251","DOI":"10.1023\/A:1021713901879","article-title":"Ranking learning algorithms","volume":"50","author":"Brazdil","year":"2003","journal-title":"Mach. Learn."}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231214010091?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231214010091?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,6,1]],"date-time":"2024-06-01T06:34:12Z","timestamp":1717223652000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231214010091"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2015,2]]},"references-count":83,"alternative-id":["S0925231214010091"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2014.07.057","relation":{},"ISSN":["0925-2312"],"issn-type":[{"value":"0925-2312","type":"print"}],"subject":[],"published":{"date-parts":[[2015,2]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A Projection Pursuit framework for supervised dimension reduction of high dimensional small sample datasets","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2014.07.057","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"Copyright \u00a9 2014 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}