{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,27]],"date-time":"2024-07-27T11:50:47Z","timestamp":1722081047193},"reference-count":50,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2012,6,1]],"date-time":"2012-06-01T00:00:00Z","timestamp":1338508800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2012,6,1]],"date-time":"2012-06-01T00:00:00Z","timestamp":1338508800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2012,6,1]],"date-time":"2012-06-01T00:00:00Z","timestamp":1338508800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2012,6,1]],"date-time":"2012-06-01T00:00:00Z","timestamp":1338508800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2012,6,1]],"date-time":"2012-06-01T00:00:00Z","timestamp":1338508800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2012,6,1]],"date-time":"2012-06-01T00:00:00Z","timestamp":1338508800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2012,6]]},"DOI":"10.1016\/j.neucom.2012.01.010","type":"journal-article","created":{"date-parts":[[2012,2,24]],"date-time":"2012-02-24T10:46:49Z","timestamp":1330080409000},"page":"59-74","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":40,"special_numbering":"C","title":["Nonlinear time series modeling and prediction using functional weights wavelet neural network-based state-dependent AR model"],"prefix":"10.1016","volume":"86","author":[{"given":"Garba","family":"Inoussa","sequence":"first","affiliation":[]},{"given":"Hui","family":"Peng","sequence":"additional","affiliation":[]},{"given":"Jun","family":"Wu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"3\u20134","key":"10.1016\/j.neucom.2012.01.010_bib1","doi-asserted-by":"crossref","first-page":"219","DOI":"10.1016\/j.ins.2004.10.005","article-title":"Time series forecasting using flexible neural tree model","volume":"174","author":"Chen","year":"2005","journal-title":"Inf. Sci."},{"key":"10.1016\/j.neucom.2012.01.010_bib2","doi-asserted-by":"crossref","first-page":"217","DOI":"10.1007\/s11063-006-9021-x","article-title":"Predicting chaotic time series using neural and neurofuzzy models: a comparative study","volume":"24","author":"Gholipour","year":"2006","journal-title":"Neural Process. Lett."},{"key":"10.1016\/j.neucom.2012.01.010_bib3","unstructured":"T. Koskela, M. Lehtokangas, J. Saarinen, K. Kaski, Time series prediction with multilayer perceptron, FIR and Elman neural networks, in: Proceedings of the World Congress on Neural Networks, 1996, pp. 491\u2013496."},{"key":"10.1016\/j.neucom.2012.01.010_bib4","doi-asserted-by":"crossref","unstructured":"Q. Ma, Q. Zheng, H. Peng, T. Zhong, L. Xu, Chaotic time series prediction based on evolving recurrent neural networks, in: Proceedings of the Sixth International Conference on Machine Learning and Cybernetics, Hong Kong, 2007.","DOI":"10.1109\/ICMLC.2007.4370752"},{"key":"10.1016\/j.neucom.2012.01.010_bib5","doi-asserted-by":"crossref","first-page":"267","DOI":"10.1016\/S0925-2312(01)00338-1","article-title":"Time series analysis using normalized PG-RBF network with regression weights","volume":"42","author":"Rojas","year":"2002","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2012.01.010_bib6","doi-asserted-by":"crossref","first-page":"325","DOI":"10.1016\/0165-0114(95)00322-3","article-title":"Radial basis function based adaptive fuzzy systems and their applications to system identification and prediction","volume":"83","author":"Cho","year":"1996","journal-title":"Fuzzy Sets Syst."},{"key":"10.1016\/j.neucom.2012.01.010_bib7","doi-asserted-by":"crossref","first-page":"1388","DOI":"10.1016\/j.neucom.2007.06.004","article-title":"Time series prediction using evolving radial basis function networks with new encoding scheme","volume":"71","author":"Du","year":"2008","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2012.01.010_bib8","doi-asserted-by":"crossref","first-page":"2161","DOI":"10.1016\/j.neucom.2005.07.010","article-title":"The effect of different basis functions on a radial basis function network for time series prediction: a comparative study","volume":"69","author":"Harpham","year":"2006","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2012.01.010_bib9","doi-asserted-by":"crossref","first-page":"821","DOI":"10.1016\/j.fss.2007.11.003","article-title":"Hybridization of intelligent techniques and ARIMA models for time series prediction","volume":"159","author":"Valenzuela","year":"2008","journal-title":"Fuzzy Sets Syst."},{"issue":"7","key":"10.1016\/j.neucom.2012.01.010_bib10","doi-asserted-by":"crossref","first-page":"717","DOI":"10.1080\/002077299292038","article-title":"Nonlinear time series modeling with the radial basis function-based state-dependent autoregressive model","volume":"30","author":"Shi","year":"1999","journal-title":"Int. J. Syst. Sci."},{"key":"10.1016\/j.neucom.2012.01.010_bib11","doi-asserted-by":"crossref","first-page":"2540","DOI":"10.1016\/j.neucom.2010.06.004","article-title":"Chaotic time series prediction with residual analysis method using hybrid Elman-NARX neural networks","volume":"73","author":"Ardalani-Farsa","year":"2010","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2012.01.010_bib12","doi-asserted-by":"crossref","first-page":"4370","DOI":"10.1016\/j.ins.2010.07.012","article-title":"A locally linear RBF network-based state-dependent AR model for nonlinear time series modeling","volume":"180","author":"Gan","year":"2010","journal-title":"Inf. Sci."},{"key":"10.1016\/j.neucom.2012.01.010_bib13","series-title":"Fuzzy Logic Toolbox User's Guide","author":"Jang","year":"2000"},{"key":"10.1016\/j.neucom.2012.01.010_bib14","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/0165-0114(80)90059-7","article-title":"The evaluation of fuzzy model derived from experimental data","volume":"4","author":"Tong","year":"1980","journal-title":"Fuzzy Sets Syst."},{"issue":"2","key":"10.1016\/j.neucom.2012.01.010_bib15","doi-asserted-by":"crossref","first-page":"153","DOI":"10.1016\/0165-0114(84)90015-0","article-title":"An identification algorithm in fuzzy relational systems","volume":"13","author":"Pedrycz","year":"1984","journal-title":"Fuzzy Sets Syst."},{"issue":"4","key":"10.1016\/j.neucom.2012.01.010_bib16","doi-asserted-by":"crossref","first-page":"683","DOI":"10.1109\/TSMC.1987.289361","article-title":"Fuzzy model identification and self-learning for dynamic systems","volume":"SMC-17","author":"Xu","year":"1987","journal-title":"IEEE Trans. Syst. Man Cybern."},{"issue":"1","key":"10.1016\/j.neucom.2012.01.010_bib17","doi-asserted-by":"crossref","first-page":"7","DOI":"10.1109\/TFUZZ.1993.390281","article-title":"A fuzzy-logic-based approach to qualitative modeling","volume":"1","author":"Sugeno","year":"1993","journal-title":"IEEE Trans. Fuzzy Syst."},{"key":"10.1016\/j.neucom.2012.01.010_bib18","doi-asserted-by":"crossref","first-page":"523","DOI":"10.1109\/91.649903","article-title":"Forecasting time series with genetic fuzzy predictor ensembles","volume":"5","author":"Kim","year":"1997","journal-title":"IEEE Trans. Fuzzy Syst."},{"issue":"5","key":"10.1016\/j.neucom.2012.01.010_bib19","doi-asserted-by":"crossref","first-page":"1006","DOI":"10.1109\/TSMCB.2006.872265","article-title":"Evolving compact and interpretable Takagi\u2013Sugeno fuzzy models with a new encoding scheme","volume":"36","author":"Kim","year":"2006","journal-title":"IEEE Trans. Syst. Man Cybern."},{"key":"10.1016\/j.neucom.2012.01.010_bib20","series-title":"HyFIS: Adaptive Neuro-fuzzy Inference Systems and Their Application to Nonlinear Dynamical Systems Neural Networks, vol. 12","author":"Kim","year":"1999"},{"issue":"6","key":"10.1016\/j.neucom.2012.01.010_bib21","doi-asserted-by":"crossref","first-page":"963","DOI":"10.1109\/21.384258","article-title":"Constructing fuzzy model by self-organizing counterpropagation network","volume":"25","author":"Nie","year":"1995","journal-title":"IEEE Trans. Syst. Man Cybern."},{"issue":"2","key":"10.1016\/j.neucom.2012.01.010_bib22","doi-asserted-by":"crossref","first-page":"190","DOI":"10.1109\/91.388173","article-title":"A new approach to fuzzy-neural system modeling","volume":"3","author":"Lin","year":"1995","journal-title":"IEEE Trans. Fuzzy Syst."},{"issue":"9","key":"10.1016\/j.neucom.2012.01.010_bib23","doi-asserted-by":"crossref","first-page":"1907","DOI":"10.1117\/12.59918","article-title":"Neural network adaptive wavelets for signal representation and classification","volume":"31","author":"Szu","year":"1992","journal-title":"Opt. Eng."},{"issue":"1","key":"10.1016\/j.neucom.2012.01.010_bib24","doi-asserted-by":"crossref","first-page":"73","DOI":"10.1109\/72.182697","article-title":"Analysis and synthesis of feedforward neural networks using discrete affine wavelet transformations","volume":"4","author":"Pati","year":"1993","journal-title":"IEEE Trans. Neural Networks"},{"key":"10.1016\/j.neucom.2012.01.010_bib25","unstructured":"A.A. Safavi, Wavelet neural networks and multiresolution analysis with applications to process systems engineering, Ph.D. Thesis, The University of Sydney, Australia, 1996."},{"issue":"3","key":"10.1016\/j.neucom.2012.01.010_bib26","first-page":"301","article-title":"Application of wavelet-based neural networks to the modelling and optimisation of an experimental distillation column engineering applications","volume":"10","author":"Safavi","year":"1997","journal-title":"Artif. lntell."},{"issue":"6","key":"10.1016\/j.neucom.2012.01.010_bib27","doi-asserted-by":"crossref","first-page":"889","DOI":"10.1109\/72.165591","article-title":"A wavelet networks","volume":"3","author":"Zhang,","year":"1992","journal-title":"IEEE Trans. Neural Networks"},{"issue":"1","key":"10.1016\/j.neucom.2012.01.010_bib28","first-page":"7","article-title":"Wave-net: a multiresolution, hierarchical neural network with localised learning","volume":"39","author":"Bakshi.","year":"1993","journal-title":"A.I.Ch.E. J."},{"key":"10.1016\/j.neucom.2012.01.010_bib29","first-page":"420","article-title":"Multilayer perceptron based decision feedback equalizers for channels with intersymbol interference","volume":"140","author":"Meyer","year":"1993","journal-title":"IEE Proc.\u2014I"},{"key":"10.1016\/j.neucom.2012.01.010_bib30","doi-asserted-by":"crossref","first-page":"449","DOI":"10.1016\/j.neucom.2005.02.006","article-title":"Time series prediction using a local linear wavelet neural network","volume":"69","author":"Chen","year":"2006","journal-title":"Neurocomputing"},{"issue":"7\u20139","key":"10.1016\/j.neucom.2012.01.010_bib31","doi-asserted-by":"crossref","first-page":"1405","DOI":"10.1016\/j.neucom.2009.12.007","article-title":"Composite function wavelet neural networks with extreme learning machine","volume":"73","author":"Cao","year":"2010","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2012.01.010_bib32","doi-asserted-by":"crossref","first-page":"251","DOI":"10.1007\/s11063-011-9176-y","article-title":"Composite function wavelet neural networks with differential evolution and extreme learning machine","volume":"33","author":"Cao","year":"2011","journal-title":"Neural Process. Lett."},{"key":"10.1016\/j.neucom.2012.01.010_bib33","first-page":"310","article-title":"Wavelet packet multi-layer perceptron for chaotic time series prediction: effects of weight initialization","author":"Teo","year":"2001","journal-title":"Comput. Sci. 2074"},{"issue":"3","key":"10.1016\/j.neucom.2012.01.010_bib34","doi-asserted-by":"crossref","first-page":"137","DOI":"10.1080\/00207720512331338120","article-title":"The wavelet-NARMAX representation: a hybrid model structure combining polynomial models with multiresolution wavelet decompositions","volume":"36","author":"Billings","year":"2005","journal-title":"Int. J. Syst. Sci."},{"key":"10.1016\/j.neucom.2012.01.010_bib35","doi-asserted-by":"crossref","first-page":"130","DOI":"10.1016\/j.dss.2010.12.002","article-title":"A hybrid sarima wavelet transform method for sales forecasting","volume":"51","author":"Choi","year":"2011","journal-title":"Decision Support Syst."},{"key":"10.1016\/j.neucom.2012.01.010_bib36","doi-asserted-by":"crossref","first-page":"432","DOI":"10.1109\/TNN.2003.809395","article-title":"A parameter optimization method for radial basis function type models","volume":"14","author":"Peng","year":"2003","journal-title":"IEEE Trans. Neural Networks"},{"key":"10.1016\/j.neucom.2012.01.010_bib37","doi-asserted-by":"crossref","first-page":"716","DOI":"10.1109\/TAC.1974.1100705","article-title":"A new look at the statistical model identification","volume":"19","author":"Akaike","year":"1974","journal-title":"IEEE Trans. Autom. Control"},{"key":"10.1016\/j.neucom.2012.01.010_bib38","doi-asserted-by":"crossref","first-page":"461","DOI":"10.1214\/aos\/1176344136","article-title":"Estimating the dimension of a model","volume":"6","author":"Schwarz","year":"1978","journal-title":"Ann. Stat."},{"issue":"5","key":"10.1016\/j.neucom.2012.01.010_bib39","doi-asserted-by":"crossref","first-page":"1163","DOI":"10.1109\/72.950144","article-title":"Prediction of noisy chaotic time series using an optimal radial basis function neural network","volume":"12","author":"Leung","year":"2001","journal-title":"IEEE Trans. Neural Networks"},{"key":"10.1016\/j.neucom.2012.01.010_bib40","series-title":"Neural Networks in Finance: Gaining Predictive Edge in the Market","author":"McNelis","year":"2005"},{"key":"10.1016\/j.neucom.2012.01.010_bib41","unstructured":"M.J.L. Orr, Introduction to radial basis function networks, 1996 \u3008http:\/\/www.anc.ed.ac.uk\/_mjo\/rbf.html\u3009."},{"key":"10.1016\/j.neucom.2012.01.010_bib42","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1177\/001316445101100101","article-title":"Problems and designs of cross-validation","volume":"11","author":"Mosier","year":"1951","journal-title":"Educ. Psychol. Meas."},{"key":"10.1016\/j.neucom.2012.01.010_bib43","series-title":"Optimization Toolbox User's Guide","author":"Coleman","year":"1999"},{"key":"10.1016\/j.neucom.2012.01.010_bib44","series-title":"Matrix Computations","author":"Golub","year":"1996"},{"key":"10.1016\/j.neucom.2012.01.010_bib45","series-title":"Nonlinear Time Series Analysis","author":"kantz","year":"1998"},{"key":"10.1016\/j.neucom.2012.01.010_bib46","unstructured":"Wikipedia \u3008http:\/\/en.wikipedia.org\/wiki\/Sunspot\u3009."},{"key":"10.1016\/j.neucom.2012.01.010_bib47","doi-asserted-by":"crossref","first-page":"673","DOI":"10.1029\/TR030i005p00673","article-title":"Prediction of sunspot numbers","volume":"30","author":"McNish","year":"1949","journal-title":"Trans. Am. Geophys. Union"},{"key":"10.1016\/j.neucom.2012.01.010_bib48","doi-asserted-by":"crossref","first-page":"312","DOI":"10.1051\/0004-6361:20011068","article-title":"Solar cycle forecasting: a nonlinear dynamics approach","volume":"377","author":"Sello","year":"2001","journal-title":"Astron. Astrophys."},{"key":"10.1016\/j.neucom.2012.01.010_bib49","series-title":"Solar\u2013Terrestrial Prediction Workshop, vol. V","first-page":"103","article-title":"About sunspot number medium-term predictions","author":"Denkmayr","year":"1997"},{"key":"10.1016\/j.neucom.2012.01.010_bib50","unstructured":"SIDC (World Data Center for the Sunspot Index) \u3008http:\/\/sidc.oma.be\/index.php3\u3009."}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231212000963?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231212000963?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,1,29]],"date-time":"2024-01-29T11:52:05Z","timestamp":1706529125000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231212000963"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2012,6]]},"references-count":50,"alternative-id":["S0925231212000963"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2012.01.010","relation":{},"ISSN":["0925-2312"],"issn-type":[{"value":"0925-2312","type":"print"}],"subject":[],"published":{"date-parts":[[2012,6]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Nonlinear time series modeling and prediction using functional weights wavelet neural network-based state-dependent AR model","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2012.01.010","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"Copyright \u00a9 2012 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}