{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,7]],"date-time":"2025-03-07T05:25:10Z","timestamp":1741325110222,"version":"3.38.0"},"reference-count":27,"publisher":"Elsevier BV","issue":"17","license":[{"start":{"date-parts":[[2011,10,1]],"date-time":"2011-10-01T00:00:00Z","timestamp":1317427200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2011,10,1]],"date-time":"2011-10-01T00:00:00Z","timestamp":1317427200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2011,10,1]],"date-time":"2011-10-01T00:00:00Z","timestamp":1317427200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2011,10,1]],"date-time":"2011-10-01T00:00:00Z","timestamp":1317427200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2011,10,1]],"date-time":"2011-10-01T00:00:00Z","timestamp":1317427200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2011,10,1]],"date-time":"2011-10-01T00:00:00Z","timestamp":1317427200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2011,10]]},"DOI":"10.1016\/j.neucom.2011.05.014","type":"journal-article","created":{"date-parts":[[2011,6,30]],"date-time":"2011-06-30T19:27:59Z","timestamp":1309462079000},"page":"3313-3322","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":14,"title":["Fast kernel Fisher discriminant analysis via approximating the kernel principal component analysis"],"prefix":"10.1016","volume":"74","author":[{"given":"Jinghua","family":"Wang","sequence":"first","affiliation":[]},{"given":"Qin","family":"Li","sequence":"additional","affiliation":[]},{"given":"Jane","family":"You","sequence":"additional","affiliation":[]},{"given":"Qijun","family":"Zhao","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"2","key":"10.1016\/j.neucom.2011.05.014_bib1","doi-asserted-by":"crossref","first-page":"181","DOI":"10.1109\/72.914517","article-title":"An introduction to kernel-based learning algorithms","volume":"12","author":"Muller","year":"2001","journal-title":"IEEE Transactions on Neural Network"},{"year":"1995","series-title":"The Nature of Statistical Learning Theory","author":"Vapnik","key":"10.1016\/j.neucom.2011.05.014_bib2"},{"issue":"2","key":"10.1016\/j.neucom.2011.05.014_bib3","doi-asserted-by":"crossref","first-page":"40","DOI":"10.1109\/97.991133","article-title":"Face recognition using kernel principal component analysis","volume":"9","author":"Kim","year":"2002","journal-title":"IEEE Signal Processing Letters"},{"issue":"5","key":"10.1016\/j.neucom.2011.05.014_bib4","doi-asserted-by":"crossref","first-page":"1299","DOI":"10.1162\/089976698300017467","article-title":"Nonlinear component analysis as a kernel eigenvalue problem","volume":"10","author":"Scholkopf","year":"1998","journal-title":"Neural Computation"},{"issue":"10","key":"10.1016\/j.neucom.2011.05.014_bib5","doi-asserted-by":"crossref","first-page":"2385","DOI":"10.1162\/089976600300014980","article-title":"Generalized discriminant analysis using a kernel approach","volume":"12","author":"Baudat","year":"2000","journal-title":"Neural Computation"},{"key":"10.1016\/j.neucom.2011.05.014_bib6","doi-asserted-by":"crossref","unstructured":"S. Mika, G. R\u00e4tsch, J. Weston, K.R. M\u00fcller, Fisher discriminant analysis with kernels, in: Proceedings of the IEEE International Workshop Neural Networks for Signal Processing IX, 1999, pp. 41\u201348.","DOI":"10.1109\/NNSP.1999.788121"},{"key":"10.1016\/j.neucom.2011.05.014_bib7","unstructured":"J.H. Xu, X.G. Zhang, Y. Li, Kernel MSE algorithm: a unified framework for KFD, LS-SVM and KRR, in: Proceedings of the International Joint Conference on Neural Networks (IJCNN-2001), Washington, 2001, pp. 1486\u20131491."},{"year":"1990","series-title":"Introduction to Statistical Pattern Recognition","author":"Fukunaga","key":"10.1016\/j.neucom.2011.05.014_bib8"},{"issue":"3","key":"10.1016\/j.neucom.2011.05.014_bib9","doi-asserted-by":"crossref","first-page":"1106","DOI":"10.1016\/j.patcog.2009.09.013","article-title":"A feature extraction method for use with bimodal biometrics","volume":"43","author":"Xu","year":"2010","journal-title":"Pattern Recognition"},{"year":"2009","series-title":"Advanced Pattern Recognition Technologies with Applications to Biometrics","author":"Zhang","key":"10.1016\/j.neucom.2011.05.014_bib10"},{"key":"10.1016\/j.neucom.2011.05.014_bib11","doi-asserted-by":"crossref","unstructured":"M.H. Yang, Kernel eigenfaces vs. kernel fisherfaces: face recognition using kernel methods, in: Proceedings of the Fifth IEEE International Conference on Automatic Face and Gesture Recognition, Washington, D.C., 2002, pp. 215\u2013220.","DOI":"10.1109\/AFGR.2002.4527207"},{"issue":"2","key":"10.1016\/j.neucom.2011.05.014_bib12","doi-asserted-by":"crossref","first-page":"230","DOI":"10.1109\/TPAMI.2005.33","article-title":"KPCA plus LDA: a complete kernel Fisher discriminant framework for feature extraction and recognition","volume":"27","author":"Yang","year":"2005","journal-title":"IEEE Transactions on pattern analysis and machine intelligence"},{"issue":"1","key":"10.1016\/j.neucom.2011.05.014_bib13","doi-asserted-by":"crossref","first-page":"263","DOI":"10.1016\/S0893-6080(01)00142-3","article-title":"Nonlinear Fisher discriminant analysis using a minimum squared error cost function and the orthogonal least squares algorithm","volume":"15","author":"Billings","year":"2002","journal-title":"Neural Networks"},{"key":"10.1016\/j.neucom.2011.05.014_bib14","unstructured":"A.J. Smola, B. Scholkopf, Sparse greedy matrix approximation for machine learning, in: Proceedings of the 17th International Conference on Machine Learning, San Francisco, 2000, pp. 911\u2013918."},{"issue":"20","key":"10.1016\/j.neucom.2011.05.014_bib15","doi-asserted-by":"crossref","first-page":"2091","DOI":"10.1016\/j.patcog.2004.02.016","article-title":"An efficient renovation on kernel Fisher discriminant analysis and face recognition experiments","volume":"37","author":"Xu","year":"2004","journal-title":"Pattern Recognition"},{"issue":"16\u201318","key":"10.1016\/j.neucom.2011.05.014_bib16","doi-asserted-by":"crossref","first-page":"3334","DOI":"10.1016\/j.neucom.2010.04.007","article-title":"Reformative nonlinear feature extraction using kernel MSE","volume":"73","author":"Zhu","year":"2010","journal-title":"Neurocomputing"},{"issue":"6","key":"10.1016\/j.neucom.2011.05.014_bib17","doi-asserted-by":"crossref","first-page":"1026","DOI":"10.1016\/j.patcog.2005.10.029","article-title":"A fast kernel-based nonlinear discriminant analysis for multi-class classification","volume":"39","author":"Xu","year":"2006","journal-title":"Pattern Recognition"},{"key":"10.1016\/j.neucom.2011.05.014_bib18","article-title":"Using the Nystrom method to speed up kernel machines","volume":"vol. 13","author":"Williams","year":"2001"},{"issue":"10","key":"10.1016\/j.neucom.2011.05.014_bib19","doi-asserted-by":"crossref","first-page":"2097","DOI":"10.1016\/j.patcog.2003.10.015","article-title":"Essence of kernel Fisher discriminant: KPCA plus LDA","volume":"37","author":"Yang","year":"2004","journal-title":"Pattern Recognition"},{"year":"2004","series-title":"Pattern Classification","author":"Richard","key":"10.1016\/j.neucom.2011.05.014_bib20"},{"key":"10.1016\/j.neucom.2011.05.014_bib21","first-page":"415","article-title":"Functions of positive and negative type and their connection with the theory of integral equations","volume":"A209","author":"Mercer","year":"1909","journal-title":"Philosophical Transactions on the Royal Society of London"},{"key":"10.1016\/j.neucom.2011.05.014_bib22","unstructured":"M. Gibbs, D.J.C. Mackay, Efficient Implementation of Gaussian Process, Technical report, Cavendish Laboratory, Cambridge, UK, 1997."},{"issue":"4","key":"10.1016\/j.neucom.2011.05.014_bib23","doi-asserted-by":"crossref","first-page":"659","DOI":"10.1109\/TSMCB.2005.844596","article-title":"Kernel machine-based one-parameter regularized fisher discriminant method for face recognition","volume":"35","author":"Chen","year":"2008","journal-title":"IEEE Transactions on systems man and cybernetics-part B: Cybernetics"},{"issue":"5","key":"10.1016\/j.neucom.2011.05.014_bib24","doi-asserted-by":"crossref","first-page":"623","DOI":"10.1109\/TPAMI.2003.1195996","article-title":"Constructing Descriptive and Discriminative Nonlinear Features: Rayleigh coefficients in kernel feature spaces","volume":"25","author":"Mika","year":"2003","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"10.1016\/j.neucom.2011.05.014_bib25","unstructured":"A.M. Martinez, R. Benavente, The AR Face Database, CVC Technical Report #24, 1998."},{"issue":"6","key":"10.1016\/j.neucom.2011.05.014_bib26","doi-asserted-by":"crossref","first-page":"643","DOI":"10.1109\/34.927464","article-title":"From few to many: illumination cone models for face recognition under variable lighting and pose","volume":"23","author":"Georghiades","year":"2001","journal-title":"IEEE Transactions on Pattern Anal. Mach. Intelligence"},{"key":"10.1016\/j.neucom.2011.05.014_bib27","doi-asserted-by":"crossref","unstructured":"J. Wang, B. Xie, J. Xu, H. Chen, A fast KPCA-based nonlinear feature extraction method, in: Proceedings of the Second Asia-Pacific Conference on Computational Intelligence and Industrial Applications, vol. 2, Wuhan, China, 2009, pp. 232\u2013235.","DOI":"10.1109\/PACIIA.2009.5406645"}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231211003419?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231211003419?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2025,3,6]],"date-time":"2025-03-06T21:10:32Z","timestamp":1741295432000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231211003419"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2011,10]]},"references-count":27,"journal-issue":{"issue":"17","published-print":{"date-parts":[[2011,10]]}},"alternative-id":["S0925231211003419"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2011.05.014","relation":{},"ISSN":["0925-2312"],"issn-type":[{"type":"print","value":"0925-2312"}],"subject":[],"published":{"date-parts":[[2011,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Fast kernel Fisher discriminant analysis via approximating the kernel principal component analysis","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2011.05.014","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"Copyright \u00a9 2011 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}