{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,6,19]],"date-time":"2024-06-19T07:16:26Z","timestamp":1718781386874},"reference-count":69,"publisher":"Elsevier BV","issue":"6","license":[{"start":{"date-parts":[[2011,2,1]],"date-time":"2011-02-01T00:00:00Z","timestamp":1296518400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2011,2]]},"DOI":"10.1016\/j.neucom.2010.10.013","type":"journal-article","created":{"date-parts":[[2010,12,23]],"date-time":"2010-12-23T09:30:48Z","timestamp":1293096648000},"page":"896-905","source":"Crossref","is-referenced-by-count":35,"title":["Disaggregation & aggregation of time series components: A hybrid forecasting approach using generalized regression neural networks and the theta method"],"prefix":"10.1016","volume":"74","author":[{"given":"Marina","family":"Theodosiou","sequence":"first","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neucom.2010.10.013_bib1","first-page":"5","article-title":"Indices of business conditions","volume":"1","author":"Persons","year":"1919","journal-title":"Review of Economics and Statistics"},{"key":"10.1016\/j.neucom.2010.10.013_bib2","unstructured":"E. Dagum, The X-11-ARIMA\/88 seasonal adjustment method foundations and users manual, time series research and analysis division, Statistics Canada Technical Report, Canada, 1988."},{"key":"10.1016\/j.neucom.2010.10.013_bib3","unstructured":"W.S. Cleveland, S. Devlin, I. Terpenning, The sabl statistical and graphical methods, computing information library, Bell Labs, 600 Mountain Ave., Murray Hill, N.J. 07974, USA, 1981."},{"key":"10.1016\/j.neucom.2010.10.013_bib4","unstructured":"W.S. Cleveland, S. Devlin, I. Terpenning, The details of the sabl transformation, decomposition and calendar methods, computing Information Library, Bell Labs, 600 Mountain Ave., Murray Hill, N.J. 07974, USA, 1981."},{"key":"10.1016\/j.neucom.2010.10.013_bib5","first-page":"3","article-title":"Stl: a seasonal-trend decomposition procedure based on loess","volume":"6","author":"Cleveland","year":"1990","journal-title":"Journal of Official Statistics"},{"key":"10.1016\/j.neucom.2010.10.013_bib6","unstructured":"A. Burns, W. Mitchell, Measuring business cycles, National Bureau of Economic Research, New York, Technical Report, 1946."},{"key":"10.1016\/j.neucom.2010.10.013_bib7","series-title":"Time Series Analysis: Forecasting and Control (Revised Edition)","author":"Box","year":"1976"},{"key":"10.1016\/j.neucom.2010.10.013_bib8","doi-asserted-by":"crossref","first-page":"259","DOI":"10.1007\/BF02408380","article-title":"Structural decomposition of time series with implications in economics","volume":"1","author":"Newbold","year":"1991","journal-title":"Accounting and Finance Research, Review of Quantitative Finance and Accounting"},{"key":"10.1016\/j.neucom.2010.10.013_bib9","doi-asserted-by":"crossref","first-page":"307","DOI":"10.1057\/palgrave.jors.2601523","article-title":"Forecasting and recombining time series components by using neural networks","volume":"54","author":"Hansen","year":"2003","journal-title":"Journal of Operational Research Society"},{"key":"10.1016\/j.neucom.2010.10.013_bib10","unstructured":"J. Shiskin, A. Young, J. Musgrave, The x-11 variant of the census ii seasonal adjustment program, Technical Report, 15, US Department of Commerce, Bureau of Economic Analysis, Washington DC, Technical Report, 1965."},{"key":"10.1016\/j.neucom.2010.10.013_bib11","unstructured":"M. Theodosiou, S. Murali, A hybrid forecasting approach: structural decomposition, generalized regression neural networks and theta method, in: NN3 Competition, 2007, \u3008www.neuralforecastingcompetition.com\/NN3\/results\u3009."},{"key":"10.1016\/j.neucom.2010.10.013_bib12","doi-asserted-by":"crossref","first-page":"568","DOI":"10.1109\/72.97934","article-title":"A general regression neural network","volume":"2","author":"Specht","year":"1991","journal-title":"IEEE Transactions Neural Networks"},{"issue":"4","key":"10.1016\/j.neucom.2010.10.013_bib13","doi-asserted-by":"crossref","first-page":"521","DOI":"10.1016\/S0169-2070(00)00066-2","article-title":"The theta model: a decomposition approach to forecasting","volume":"16","author":"Assimakopoulos","year":"2000","journal-title":"International Journal of Forecasting"},{"key":"10.1016\/j.neucom.2010.10.013_bib14","series-title":"Neural Networks: A Comprehensive Foundation","author":"Haykin","year":"1994"},{"issue":"1082\u20131092","key":"10.1016\/j.neucom.2010.10.013_bib15","article-title":"Neural network models for times series forecasting","volume":"42","author":"Hill","year":"1996","journal-title":"Management Science"},{"issue":"1","key":"10.1016\/j.neucom.2010.10.013_bib16","doi-asserted-by":"crossref","first-page":"35","DOI":"10.1016\/S0169-2070(97)00044-7","article-title":"Forecasting with artificial neural networks: the state of the art","volume":"14","author":"Zhang","year":"1998","journal-title":"International Journal of Forecasting"},{"key":"10.1016\/j.neucom.2010.10.013_bib17","doi-asserted-by":"crossref","first-page":"1419","DOI":"10.1109\/ICNN.1993.298765","article-title":"Stock ranking: neural networks vs. multiple linear regression","volume":"3","author":"Refenes","year":"1993","journal-title":"IEEE International Conference on Neural Networks"},{"key":"10.1016\/j.neucom.2010.10.013_bib18","doi-asserted-by":"crossref","first-page":"652","DOI":"10.1057\/palgrave.jors.2601133","article-title":"Time series forecasting with neural network ensembles: an application for exchange rate prediction","volume":"52","author":"Zhang","year":"2001","journal-title":"Journal of the Operational Research Society"},{"issue":"4","key":"10.1016\/j.neucom.2010.10.013_bib19","doi-asserted-by":"crossref","first-page":"755","DOI":"10.1016\/j.ijforecast.2005.04.010","article-title":"Linear models, smooth transition autoregressions, and neural networks for forecasting macroeconomic time series: a re-examination","volume":"21","author":"Ter\u00e4svirta","year":"2005","journal-title":"International Journal of Forecasting"},{"issue":"3","key":"10.1016\/j.neucom.2010.10.013_bib20","doi-asserted-by":"crossref","first-page":"435","DOI":"10.1016\/S0169-2070(03)00062-1","article-title":"Linear versus neural network forecasts for european industrial production series","volume":"20","author":"Heravi","year":"2004","journal-title":"International Journal of Forecasting"},{"key":"10.1016\/j.neucom.2010.10.013_bib21","first-page":"31","article-title":"Time series forecasting with neural networks: a comparative study using the airline data","volume":"4","author":"Faraway","year":"1998","journal-title":"Applied Statistics"},{"issue":"4","key":"10.1016\/j.neucom.2010.10.013_bib22","doi-asserted-by":"crossref","first-page":"451","DOI":"10.1016\/S0169-2070(00)00057-1","article-title":"The m3-competition: results, conclusions and implications","volume":"16","author":"Makridakis","year":"2000","journal-title":"International Journal of Forecasting"},{"key":"10.1016\/j.neucom.2010.10.013_bib23","unstructured":"F. Crone, K. Nikolopoulos, M. Hibon, Automatic modeling and forecasting with artificial neural networks\u2014a forecasting competition evaluation, Final Report for the IIF\/SAS Grant 2005\/6, Technical Report, 2008."},{"issue":"1","key":"10.1016\/j.neucom.2010.10.013_bib24","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/0169-2070(93)90043-M","article-title":"Neural networks: forecasting breakthrough or passing fad?","volume":"9","author":"Chatfield","year":"1993","journal-title":"International Journal of Forecasting"},{"key":"10.1016\/j.neucom.2010.10.013_bib25","doi-asserted-by":"crossref","first-page":"309","DOI":"10.1016\/S0893-6080(98)00117-8","article-title":"Model selection in neural networks","volume":"12","author":"Anders","year":"1999","journal-title":"Neural Networks"},{"key":"10.1016\/j.neucom.2010.10.013_bib26","unstructured":"T. Ter\u00e4svirta, C. Lin, Determining the number of hidden units in a single hidden-layer neural network model, Bank of Norway, Technical Report, 1993."},{"key":"10.1016\/j.neucom.2010.10.013_bib27","doi-asserted-by":"crossref","first-page":"2","DOI":"10.1515\/JISYS.2005.14.2-3.99","article-title":"Stepwise selection of artificial neural networks models for time series prediction","volume":"14","author":"Crone","year":"2005","journal-title":"Journal of Intelligent Systems"},{"key":"10.1016\/j.neucom.2010.10.013_bib28","series-title":"Neural Networks for Pattern Recognition","author":"Bishop","year":"1995"},{"key":"10.1016\/j.neucom.2010.10.013_bib29","doi-asserted-by":"crossref","first-page":"71","DOI":"10.1080\/10286600500126256","article-title":"Generalized regression neural network in monthly flow forecasting","volume":"22","author":"Cigizoglou","year":"2005","journal-title":"Civil Engineering and Environmental Systems"},{"key":"10.1016\/j.neucom.2010.10.013_bib30","series-title":"Advanced methods in neural network","author":"Wasserman","year":"1993"},{"issue":"9","key":"10.1016\/j.neucom.2010.10.013_bib31","doi-asserted-by":"crossref","first-page":"1597","DOI":"10.1016\/S0893-6080(96)00024-X","article-title":"On-line supervised adaptive training using radial basis function networks","volume":"9","author":"Fung","year":"1996","journal-title":"Neural Networks"},{"key":"10.1016\/j.neucom.2010.10.013_bib32","doi-asserted-by":"crossref","first-page":"501","DOI":"10.1016\/j.ejor.2003.08.037","article-title":"Neural network forecasting for seasonal and trend time series","volume":"160","author":"Zhang","year":"2005","journal-title":"European Journal Of Operational Research"},{"issue":"1","key":"10.1016\/j.neucom.2010.10.013_bib33","doi-asserted-by":"crossref","first-page":"121","DOI":"10.1016\/0169-2070(93)90060-Z","article-title":"Software reviews","volume":"9","author":"Tashman","year":"1993","journal-title":"International Journal of Forecasting"},{"key":"10.1016\/j.neucom.2010.10.013_bib34","series-title":"Neural Network Time Series Forecasting of Financial Markets","author":"Azoff","year":"1994"},{"key":"10.1016\/j.neucom.2010.10.013_bib35","series-title":"Neural Networks in the Capital Markets","author":"Refenes","year":"1995"},{"key":"10.1016\/j.neucom.2010.10.013_bib36","series-title":"Neural Networks for Financial Forecasting","author":"Gately","year":"1996"},{"key":"10.1016\/j.neucom.2010.10.013_bib37","doi-asserted-by":"crossref","first-page":"1093","DOI":"10.1016\/S0305-0548(99)00144-6","article-title":"Forecasting exchange rates using general regression neural networks","volume":"27","author":"Leung","year":"2002","journal-title":"Computers and Operations Research"},{"key":"10.1016\/j.neucom.2010.10.013_bib38","doi-asserted-by":"crossref","first-page":"618","DOI":"10.2307\/2285991","article-title":"Seasonality in regression","volume":"69","author":"Sims","year":"1974","journal-title":"Journal of the American Statistical Association"},{"key":"10.1016\/j.neucom.2010.10.013_bib39","doi-asserted-by":"crossref","first-page":"18","DOI":"10.2307\/2285495","article-title":"Seasonal adjustment and relation between variables","volume":"69","author":"Wallis","year":"1974","journal-title":"Journal of the American Statistical Association"},{"issue":"4","key":"10.1016\/j.neucom.2010.10.013_bib40","doi-asserted-by":"crossref","first-page":"291","DOI":"10.2307\/1391266","article-title":"Issues involved with the seasonal adjustment of economic time series","volume":"2","author":"Bell","year":"1984","journal-title":"Journal of Business and Economic Statistics"},{"key":"10.1016\/j.neucom.2010.10.013_bib41","doi-asserted-by":"crossref","first-page":"372","DOI":"10.1287\/mnsc.35.3.372","article-title":"Seasonal exponential smoothing with damped trends","volume":"35","author":"Gardner","year":"1989","journal-title":"Management Science"},{"key":"10.1016\/j.neucom.2010.10.013_bib42","series-title":"Forecasting Methods for Management","author":"Wheelwright","year":"1985"},{"key":"10.1016\/j.neucom.2010.10.013_bib43","doi-asserted-by":"crossref","first-page":"359","DOI":"10.1002\/(SICI)1099-131X(199909)18:5<359::AID-FOR746>3.0.CO;2-P","article-title":"Time series forecasting using neural networks: should the data be deseasonalized first?","volume":"8","author":"Nelson","year":"1999","journal-title":"Journal of Forecasting"},{"key":"10.1016\/j.neucom.2010.10.013_bib44","doi-asserted-by":"crossref","unstructured":"T. Kolarik, G. Rudorfer, Time series forecasting using neural networks, in: APL Quote Quad, 1995, pp. 86\u201394.","DOI":"10.1145\/190468.190290"},{"key":"10.1016\/j.neucom.2010.10.013_bib45","first-page":"40","article-title":"Trading techniques: the care and feeding of a neural network","volume":"21","author":"Jurik","year":"1992","journal-title":"Futures: the Magazine of Commodities and Options"},{"key":"10.1016\/j.neucom.2010.10.013_bib46","doi-asserted-by":"crossref","unstructured":"P. Adeodato, G. Vasconcelos, A. Arnaud, R. Cunha, D. Monteiro, A systematic solution for the nn3 forecasting competition problem based on an ensemble of mlp neural networks, in: 17th International Conference on Pattern Recognition, 2008.","DOI":"10.1109\/ICPR.2008.4761812"},{"key":"10.1016\/j.neucom.2010.10.013_bib47","first-page":"156","article-title":"The effect of decomposition method as data preprocessing on neural networks model for forecasting trend and seasonal time series","volume":"8","author":"Suhartono","year":"2006","journal-title":"Jurnal Teknik Industri"},{"key":"10.1016\/j.neucom.2010.10.013_bib48","doi-asserted-by":"crossref","first-page":"71","DOI":"10.1016\/S0040-1625(00)00113-X","article-title":"Combining neural network model with seasonal time series arima model","volume":"69","author":"Tseng","year":"2002","journal-title":"Technological Forecasting and Social Change"},{"key":"10.1016\/j.neucom.2010.10.013_bib49","doi-asserted-by":"crossref","first-page":"159","DOI":"10.1016\/S0925-2312(01)00702-0","article-title":"Time series forecasting using a hybrid arima and neural network model","volume":"50","author":"Zhang","year":"2003","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2010.10.013_bib50","first-page":"2160","article-title":"Stock market trend prediction using arimabased neural networks","volume":"4","author":"Wang","year":"1996","journal-title":"IEEE International Conference on Neural Networks"},{"key":"10.1016\/j.neucom.2010.10.013_bib51","doi-asserted-by":"crossref","first-page":"419","DOI":"10.1080\/10170669.1997.10432936","article-title":"Combination of time series and neural network for reliability forecasting modeling","volume":"14","author":"Su","year":"1997","journal-title":"Journal of Chinese Industrial Engineering"},{"key":"10.1016\/j.neucom.2010.10.013_bib52","doi-asserted-by":"crossref","first-page":"416","DOI":"10.1287\/mnsc.44.3.416","article-title":"Using feature construction to improve the performance of neural networks","volume":"44","author":"Piramuthu","year":"1998","journal-title":"Management Science"},{"key":"10.1016\/j.neucom.2010.10.013_bib53","unstructured":"M. Theodosiou, Forecasting monthly and quarterly time series using stl decomposition, International Journal of Forecasting, forthcoming."},{"key":"10.1016\/j.neucom.2010.10.013_bib54","doi-asserted-by":"crossref","first-page":"1355","DOI":"10.1109\/72.471372","article-title":"Neural modeling for time series: a statistical stepwise method for weight elimination","volume":"6","author":"Cottrell","year":"1995","journal-title":"IEEE Transactions on Neural Networks"},{"issue":"2","key":"10.1016\/j.neucom.2010.10.013_bib55","doi-asserted-by":"crossref","first-page":"111","DOI":"10.1002\/for.3980010202","article-title":"The accuracy of extrapolative (time series) methods: results of a forecasting competition","volume":"1","author":"Makridakis","year":"1982","journal-title":"Journal of Forecasting"},{"issue":"1","key":"10.1016\/j.neucom.2010.10.013_bib56","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1016\/j.ijforecast.2003.09.015","article-title":"Forecasting seasonals and trends by exponentially weighted moving averages","volume":"20","author":"Holt","year":"2004","journal-title":"International Journal of Forecasting"},{"key":"10.1016\/j.neucom.2010.10.013_bib57","doi-asserted-by":"crossref","first-page":"324","DOI":"10.1287\/mnsc.6.3.324","article-title":"Forecasting sales by exponentially weighted moving averages","volume":"6","author":"Winters","year":"1960","journal-title":"Management Science"},{"issue":"3","key":"10.1016\/j.neucom.2010.10.013_bib58","doi-asserted-by":"crossref","first-page":"407","DOI":"10.1016\/0169-2070(95)00588-7","article-title":"On the optimality of adaptive expectations: muth revisited","volume":"11","author":"Satchell","year":"1995","journal-title":"International Journal of Forecasting"},{"issue":"3","key":"10.1016\/j.neucom.2010.10.013_bib59","doi-asserted-by":"crossref","first-page":"439","DOI":"10.1016\/S0169-2070(01)00110-8","article-title":"A state space framework for automatic forecasting using exponential smoothing methods","volume":"18","author":"Hyndman","year":"2002","journal-title":"International Journal of Forecasting"},{"key":"10.1016\/j.neucom.2010.10.013_bib60","doi-asserted-by":"crossref","first-page":"147","DOI":"10.1111\/1467-9884.00267","article-title":"A new look at models for exponential smoothing","volume":"50","author":"Chatfield","year":"2001","journal-title":"The Statistician"},{"issue":"17\u201337","key":"10.1016\/j.neucom.2010.10.013_bib61","article-title":"Prediction intervals for exponential smoothing state space models","volume":"24","author":"Hyndman","year":"2005","journal-title":"Journal of Forecasting"},{"issue":"2","key":"10.1016\/j.neucom.2010.10.013_bib62","doi-asserted-by":"crossref","first-page":"287","DOI":"10.1016\/S0169-2070(01)00143-1","article-title":"Unmasking the theta method","volume":"19","author":"Hyndman","year":"2003","journal-title":"International Journal of Forecasting"},{"key":"10.1016\/j.neucom.2010.10.013_bib63","unstructured":"S.F. Crone, K. Nikolopoulos, Nn3 artificial neural networks and computational intelligence fore- casting competition, \u3008www.neuralforecastingcompetition.com\/NN3\/results.htm\u3009, 2007."},{"issue":"2","key":"10.1016\/j.neucom.2010.10.013_bib64","doi-asserted-by":"crossref","first-page":"269","DOI":"10.1016\/S0169-2070(97)00014-9","article-title":"Robustness properties of some forecasting methods for seasonal time series: A monte carlo study","volume":"13","author":"Chen","year":"1997","journal-title":"International Journal of Forecasting"},{"issue":"3","key":"10.1016\/j.neucom.2010.10.013_bib65","doi-asserted-by":"crossref","DOI":"10.18637\/jss.v027.i03","article-title":"Automatic time series forecasting: the forecast package for r","volume":"26","author":"Hyndman","year":"2008","journal-title":"Journal of Statistical Software"},{"issue":"1","key":"10.1016\/j.neucom.2010.10.013_bib66","doi-asserted-by":"crossref","first-page":"170","DOI":"10.1016\/j.ijforecast.2007.05.002","article-title":"Exponential smoothing in the telecommunications data","volume":"24","author":"Gardner","year":"2008","journal-title":"International Journal of Forecasting"},{"key":"10.1016\/j.neucom.2010.10.013_bib67","unstructured":"R.J. Hyndman, Forecast: forecasting functions for time series, 2010, r package version 2.07. [Online]. Available: \u3008http:\/\/CRAN.R-project.org\/package=forecast\u3009."},{"key":"10.1016\/j.neucom.2010.10.013_bib68","unstructured":"R Development Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2010, ISBN 3-900051-07-0. [Online]. Available: \u3008http:\/\/www.R-project.org\u3009."},{"issue":"3","key":"10.1016\/j.neucom.2010.10.013_bib69","doi-asserted-by":"crossref","first-page":"339","DOI":"10.1016\/S0169-2070(98)00009-0","article-title":"Generalising about univariate forecasting methods: further empirical evidence","volume":"14","author":"Fildes","year":"1998","journal-title":"International Journal of Forecasting"}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231210004893?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231210004893?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,6,4]],"date-time":"2023-06-04T16:06:34Z","timestamp":1685894794000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231210004893"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2011,2]]},"references-count":69,"journal-issue":{"issue":"6","published-print":{"date-parts":[[2011,2]]}},"alternative-id":["S0925231210004893"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2010.10.013","relation":{},"ISSN":["0925-2312"],"issn-type":[{"value":"0925-2312","type":"print"}],"subject":[],"published":{"date-parts":[[2011,2]]}}}