{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T06:03:41Z","timestamp":1740117821975,"version":"3.37.3"},"reference-count":22,"publisher":"Elsevier BV","issue":"11","license":[{"start":{"date-parts":[[2011,5,1]],"date-time":"2011-05-01T00:00:00Z","timestamp":1304208000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001700","name":"Ministry of Education, Culture, Sports, Science and Technology","doi-asserted-by":"publisher","award":["18079007"],"id":[{"id":"10.13039\/501100001700","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2011,5]]},"DOI":"10.1016\/j.neucom.2010.06.027","type":"journal-article","created":{"date-parts":[[2011,2,26]],"date-time":"2011-02-26T12:38:50Z","timestamp":1298723930000},"page":"2002-2007","source":"Crossref","is-referenced-by-count":4,"title":["Two design methods of hyperparameters in variational Bayes learning for Bernoulli mixtures"],"prefix":"10.1016","volume":"74","author":[{"given":"Daisuke","family":"Kaji","sequence":"first","affiliation":[]},{"given":"Sumio","family":"Watanabe","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neucom.2010.06.027_bib1","series-title":"Bayesian Statistics","first-page":"143","article-title":"Likelihood and Bayes procedure","author":"Akaike","year":"1980"},{"key":"10.1016\/j.neucom.2010.06.027_bib2","series-title":"Proceedings of Uncertainty in Artificial Intelligence (UAI\u201999)","article-title":"Inferring parameters and structure of latent variable models by variational Bayes","author":"Attias","year":"1999"},{"key":"10.1016\/j.neucom.2010.06.027_bib3","unstructured":"M.J. Beal, Variational algorithms for approximate Bayesian inference, Ph.D. Thesis, University College London, 2003."},{"key":"10.1016\/j.neucom.2010.06.027_bib4","series-title":"Advanced Mean Field Methods: Theory and Practice","article-title":"Graphical models and variational methods","author":"Ghahramani","year":"2000"},{"year":"1965","series-title":"The Estimation of Probabilities: An Essay on Modern Bayesian Methods","author":"Good","key":"10.1016\/j.neucom.2010.06.027_bib5"},{"key":"10.1016\/j.neucom.2010.06.027_bib6","series-title":"Proceedings of the Berkeley Conference in Honor of J. Neyman and J. Kiefer","first-page":"807","article-title":"A failure of likelihood asymptotics for normal mixtures","author":"Hartigan","year":"1985"},{"key":"10.1016\/j.neucom.2010.06.027_bib7","series-title":"Proceedings of the Conference on Computational Learning Theory","first-page":"5","article-title":"Keeping neural networks simple by minimizing the description length of the weights","author":"Hinton","year":"1993"},{"year":"1968","series-title":"Latent Structure Analysis","author":"Lazarsfeld","key":"10.1016\/j.neucom.2010.06.027_bib8"},{"key":"10.1016\/j.neucom.2010.06.027_bib9","series-title":"Proceedings of the Third Annual Symposium on Neural Networks","first-page":"191","article-title":"Developments in probabilistic modeling with neural networks ensemble learning","author":"MacKay","year":"1995"},{"year":"2000","series-title":"Finite Mixture Models","author":"McLachlan","key":"10.1016\/j.neucom.2010.06.027_bib113"},{"issue":"3","key":"10.1016\/j.neucom.2010.06.027_bib114","doi-asserted-by":"crossref","first-page":"1080","DOI":"10.1214\/aos\/1176350051","article-title":"Stochastic complexity and modeling","volume":"14","author":"Rissanen","year":"1986","journal-title":"Annals of Statistics"},{"issue":"7","key":"10.1016\/j.neucom.2010.06.027_bib11","doi-asserted-by":"crossref","first-page":"1649","DOI":"10.1162\/089976601750265045","article-title":"Online model selection based on the variational Bayes","volume":"13","author":"Sato","year":"2001","journal-title":"Neural Computation"},{"year":"2007","series-title":"Programming Collective Intelligence: Building Smart Web 2.0 Applications","author":"Segaran","key":"10.1016\/j.neucom.2010.06.027_bib12"},{"issue":"4","key":"10.1016\/j.neucom.2010.06.027_bib13","first-page":"625","article-title":"Stochastic complexities of Gaussian mixtures in variational Bayesian approximation","volume":"7","author":"Watanabe","year":"2006","journal-title":"Journal of Machine Learning Research"},{"key":"10.1016\/j.neucom.2010.06.027_bib14","first-page":"1465","article-title":"Variational Bayesian stochastic complexity of mixture models","volume":"18","author":"Watanabe","year":"2006","journal-title":"Advances in Neural Information Processing Systems"},{"issue":"5","key":"10.1016\/j.neucom.2010.06.027_bib15","first-page":"1007","article-title":"Stochastic complexities of general mixture models in variational Bayesian approximation","volume":"18","author":"Watanabe","year":"2006","journal-title":"Neural Computation"},{"issue":"4","key":"10.1016\/j.neucom.2010.06.027_bib16","doi-asserted-by":"crossref","first-page":"1112","DOI":"10.1162\/neco.2007.19.4.1112","article-title":"Variational Bayes solution of linear neural networks and its generalization performance","volume":"19","author":"Nakajima","year":"2007","journal-title":"Neural Computation"},{"year":"2006","series-title":"Pattern Recognition and Machine Learning","author":"Bishop","key":"10.1016\/j.neucom.2010.06.027_bib17"},{"issue":"4","key":"10.1016\/j.neucom.2010.06.027_bib18","doi-asserted-by":"crossref","first-page":"899","DOI":"10.1162\/089976601300014402","article-title":"Algebraic analysis for nonidentifiable learning machines","volume":"13","author":"Watanabe","year":"2001","journal-title":"Neural Computation"},{"year":"2009","series-title":"Algebraic Geometry and Statistical Learning Theory","author":"Watanabe","key":"10.1016\/j.neucom.2010.06.027_bib19"},{"issue":"1","key":"10.1016\/j.neucom.2010.06.027_bib20","doi-asserted-by":"crossref","first-page":"20","DOI":"10.1016\/j.neunet.2009.08.002","article-title":"Equations of states in singular statistical estimation","volume":"23","author":"Watanabe","year":"2010","journal-title":"Neural Networks"},{"key":"10.1016\/j.neucom.2010.06.027_bib21","series-title":"Advanced Mean Field Methods\u2014Theory and Practice","first-page":"241","article-title":"Information geometry and mean field approximation: the \u03b1-projection approach","author":"Amari","year":"2001"}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231211000373?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231211000373?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,7,3]],"date-time":"2022-07-03T16:18:33Z","timestamp":1656865113000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231211000373"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2011,5]]},"references-count":22,"journal-issue":{"issue":"11","published-print":{"date-parts":[[2011,5]]}},"alternative-id":["S0925231211000373"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2010.06.027","relation":{},"ISSN":["0925-2312"],"issn-type":[{"type":"print","value":"0925-2312"}],"subject":[],"published":{"date-parts":[[2011,5]]}}}