{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,11]],"date-time":"2024-08-11T13:10:08Z","timestamp":1723381808822},"reference-count":32,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001409","name":"Department of Science and Technology, Ministry of Science and Technology, India","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001409","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001427","name":"All India Council for Technical Education","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001427","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Microprocessors and Microsystems"],"published-print":{"date-parts":[[2022,9]]},"DOI":"10.1016\/j.micpro.2022.104625","type":"journal-article","created":{"date-parts":[[2022,8,6]],"date-time":"2022-08-06T20:11:04Z","timestamp":1659816664000},"page":"104625","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":3,"special_numbering":"C","title":["A novel data visualization method for the effective assessment of cluster tendency through the dark blocks image pattern analysis"],"prefix":"10.1016","volume":"93","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-8366-4149","authenticated-orcid":false,"given":"K. Rajendra","family":"Prasad","sequence":"first","affiliation":[]},{"given":"Govardhan Reddy","family":"Kamatam","sequence":"additional","affiliation":[]},{"given":"Madhu Bala","family":"Myneni","sequence":"additional","affiliation":[]},{"given":"N. Ramanjaneya","family":"Reddy","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"3","key":"10.1016\/j.micpro.2022.104625_bib0001","doi-asserted-by":"crossref","first-page":"645","DOI":"10.1109\/TNN.2005.845141","article-title":"Survey of clustering algorithms","volume":"16","author":"Xu","year":"2005","journal-title":"IEEE Transactions on Neural Networks"},{"key":"10.1016\/j.micpro.2022.104625_bib0002","series-title":"2013 IEEE International Conference on Big Data","first-page":"112","article-title":"clusiVAT: A mixed visual\/numerical clustering algorithm for big data","author":"Kumar","year":"2013"},{"key":"10.1016\/j.micpro.2022.104625_bib0003","doi-asserted-by":"crossref","first-page":"1771","DOI":"10.1007\/s10115-021-01572-6","article-title":"A study on using data clustering for feature extraction to improve the quality of classification","volume":"63","author":"Piernik","year":"2021","journal-title":"Knowl Inf Syst"},{"key":"10.1016\/j.micpro.2022.104625_bib0004","series-title":"2016 International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES)","first-page":"691","article-title":"Improving of clustering results for speech data by visual approach","author":"Prasad","year":"2016"},{"key":"10.1016\/j.micpro.2022.104625_bib0005","doi-asserted-by":"crossref","DOI":"10.1007\/s12652-020-02710-8","article-title":"An effective assessment of cluster tendency through sampling based multi-viewpoints visual method","author":"Prasad","year":"2021","journal-title":"J Ambient Intell Human Comput"},{"key":"10.1016\/j.micpro.2022.104625_bib0006","series-title":"2020 International Conference on Signal Processing and Communications (SPCOM)","first-page":"1","article-title":"Clustering tendency assessment for datasets having inter-cluster density variations","author":"Kumar","year":"2020"},{"issue":"11","key":"10.1016\/j.micpro.2022.104625_bib0007","article-title":"Hybrid Topic Cluster Models for Social Healthcare Data","volume":"10","author":"Rajendra Prasad","year":"2019","journal-title":"International Journal of Advanced Computer Science and Applications(IJACSA)"},{"key":"10.1016\/j.micpro.2022.104625_bib0008","series-title":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","first-page":"2225","article-title":"VAT: a tool for visual assessment of (cluster) tendency","volume":"3","author":"Bezdek","year":"2002"},{"issue":"5","key":"10.1016\/j.micpro.2022.104625_bib0009","doi-asserted-by":"crossref","first-page":"813","DOI":"10.1109\/TKDE.2011.33","article-title":"An Efficient Formulation of the Improved Visual Assessment of Cluster Tendency (iVAT) Algorithm","volume":"24","author":"Havens","year":"2012","journal-title":"IEEE Transactions on Knowledge and Data Engineering"},{"key":"10.1016\/j.micpro.2022.104625_bib0010","doi-asserted-by":"crossref","unstructured":"Rathore P., Bezdek J.C., Palaniswami M. (2021) Fast Cluster Tendency Assessment for Big, High-Dimensional Data. In: Lesot MJ., Marsala C. (eds) Fuzzy Approaches for Soft Computing and Approximate Reasoning: Theories and Applications. Studies in Fuzziness and Soft Computing, vol 394. Springer, Cham. https:\/\/doi.org\/10.1007\/978-3-030-54341-9_12.","DOI":"10.1007\/978-3-030-54341-9_12"},{"key":"10.1016\/j.micpro.2022.104625_bib0011","series-title":"2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery","first-page":"3","article-title":"Automatic) Cluster Count Extraction from Unlabeled Data Sets","author":"Sledge","year":"2008"},{"issue":"3","key":"10.1016\/j.micpro.2022.104625_bib0012","doi-asserted-by":"crossref","first-page":"335","DOI":"10.1109\/TKDE.2008.158","article-title":"Automatically Determining the Number of Clusters in Unlabeled Data Sets","volume":"21","author":"Wang","year":"2009","journal-title":"IEEE Transactions on Knowledge and Data Engineering"},{"key":"10.1016\/j.micpro.2022.104625_bib0013","series-title":"2016 3rd International Conference on Systems and Informatics (ICSAI)","first-page":"393","article-title":"A fuzzy min-max neural network with classification performance irrelevant to the input sequences of samples","author":"Hu","year":"2016"},{"key":"10.1016\/j.micpro.2022.104625_bib0014","article-title":"Sampling-based visual assessment computing techniques for an efficient social data clustering","volume":"8","author":"Suleman Basha","year":"2021","journal-title":"The Journal of Supercomputing"},{"key":"10.1016\/j.micpro.2022.104625_bib0015","doi-asserted-by":"crossref","DOI":"10.1109\/TSMC.2021.3049490","article-title":"A Novel Approximate Spectral Clustering Algorithm With Dense Cores and Density Peaks","author":"Cheng","year":"2022","journal-title":"IEEE Transactions on Systems, Man, and Cybernetics: Systems"},{"key":"10.1016\/j.micpro.2022.104625_bib0016","doi-asserted-by":"crossref","first-page":"407","DOI":"10.1007\/s12046-013-0143-3","article-title":"Single pass kernel k-means clustering method","volume":"38","author":"SARMA","year":"2013","journal-title":"Sadhana"},{"key":"10.1016\/j.micpro.2022.104625_bib0017","series-title":"2014 International Symposium on Biometrics and Security Technologies (ISBAST)","first-page":"193","article-title":"Comparative study of k-means and mini batch k-means clustering algorithms in android malware detection using network traffic analysis","author":"Feizollah","year":"2014"},{"key":"10.1016\/j.micpro.2022.104625_bib0018","doi-asserted-by":"crossref","first-page":"13","DOI":"10.1007\/s40595-016-0068-y","article-title":"Fast support vector clustering","volume":"4","author":"Pham","year":"2017","journal-title":"Vietnam J Comput Sci"},{"key":"10.1016\/j.micpro.2022.104625_bib0019","doi-asserted-by":"crossref","first-page":"165","DOI":"10.1007\/s40745-015-0040-1","article-title":"Comprehensive Survey of Clustering Algorithms","volume":"2","author":"Xu","year":"2015","journal-title":"Ann. Data. Sci."},{"key":"10.1016\/j.micpro.2022.104625_bib0020","doi-asserted-by":"crossref","unstructured":"Wang L., Nguyen U.T.V., Bezdek J.C., Leckie C.A., Ramamohanarao K. (2010) iVAT and aVAT: Enhanced Visual Analysis for Cluster Tendency Assessment. In: Zaki M.J., Yu J.X., Ravindran B., Pudi V. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2010. Lecture Notes in Computer Science, vol 6118. Springer, Berlin, Heidelberg. https:\/\/doi.org\/10.1007\/978-3-642-13657-3_5.","DOI":"10.1007\/978-3-642-13657-3_5"},{"key":"10.1016\/j.micpro.2022.104625_bib0021","series-title":"2015 IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems (SPICES)","first-page":"1","article-title":"An efficient visualized clustering approach (VCA) for various datasets","author":"Prasad","year":"2015"},{"issue":"2","key":"10.1016\/j.micpro.2022.104625_bib0022","doi-asserted-by":"crossref","first-page":"170","DOI":"10.1108\/IJICC-10-2020-0151","article-title":"An enhanced cosine-based visual technique for the robust tweets data clustering","volume":"14","author":"K","year":"2021","journal-title":"International Journal of Intelligent Computing and Cybernetics"},{"key":"10.1016\/j.micpro.2022.104625_bib0023","doi-asserted-by":"crossref","first-page":"102","DOI":"10.1007\/s13198-015-0342-x","article-title":"Improving the performance of visualized clustering method","volume":"7","author":"Eswara Reddy","year":"2016","journal-title":"Int J Syst Assur Eng Manag"},{"key":"10.1016\/j.micpro.2022.104625_bib0024","series-title":"2013 3rd IEEE International Advance Computing Conference (IACC)","first-page":"726","article-title":"Assessment of clustering tendency through progressive random sampling and graph-based clustering results","author":"Prasad","year":"2013"},{"key":"10.1016\/j.micpro.2022.104625_bib0025","series-title":"2009 International Conference on Web Information Systems and Mining","first-page":"237","article-title":"Comparison of Prim and Kruskal on Shanghai and Shenzhen 300 Index Hierarchical Structure Tree","author":"Huang","year":"2009"},{"key":"10.1016\/j.micpro.2022.104625_bib0026","unstructured":"https:\/\/archive.ics.uci.edu\/ml\/datasets.php."},{"key":"10.1016\/j.micpro.2022.104625_bib0027","series-title":"2015 International Conference on Industrial Informatics - Computing Technology, Intelligent Technology, Industrial Information Integration","first-page":"30","article-title":"Gray Level-Median Histogram Based 2D Otsu's Method","author":"Sha","year":"2015"},{"key":"10.1016\/j.micpro.2022.104625_bib0028","series-title":"2019 15th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)","first-page":"688","article-title":"A Semantic Collaborative Clustering Approach Based on Confusion Matrix","author":"Zomahoun","year":"2019"},{"key":"10.1016\/j.micpro.2022.104625_bib0029","series-title":"Proceedings Seventh International Workshop on Research Issues in Data Engineering. High Performance Database Management for Large-Scale Applications","first-page":"111","article-title":"Generalization and decision tree induction: efficient classification in data mining","author":"Kamber","year":"1997"},{"key":"10.1016\/j.micpro.2022.104625_bib0030","series-title":"2008 IEEE International Conference on Data Mining Workshops","first-page":"673","article-title":"Estimating True and False Positive Rates in Higher Dimensional Problems and Its Data Mining Applications","author":"Foss","year":"2008"},{"key":"10.1016\/j.micpro.2022.104625_bib0031","doi-asserted-by":"crossref","first-page":"259","DOI":"10.1007\/s41204-022-00222-8","article-title":"Detection of pre-cluster nano-tendency through multi-viewpoints cosine-based similarity approach","volume":"7","author":"Basha","year":"2022","journal-title":"Nanotechnol. Environ. Eng."},{"key":"10.1016\/j.micpro.2022.104625_bib0032","article-title":"Hybrid visual computing models to discover the clusters assessment of high dimensional big data","author":"Suleman Basha","year":"2022","journal-title":"Soft Comput"}],"container-title":["Microprocessors and Microsystems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0141933122001624?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0141933122001624?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,1,25]],"date-time":"2024-01-25T00:45:50Z","timestamp":1706143550000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0141933122001624"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,9]]},"references-count":32,"alternative-id":["S0141933122001624"],"URL":"https:\/\/doi.org\/10.1016\/j.micpro.2022.104625","relation":{},"ISSN":["0141-9331"],"issn-type":[{"value":"0141-9331","type":"print"}],"subject":[],"published":{"date-parts":[[2022,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A novel data visualization method for the effective assessment of cluster tendency through the dark blocks image pattern analysis","name":"articletitle","label":"Article Title"},{"value":"Microprocessors and Microsystems","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.micpro.2022.104625","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"104625"}}