{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,9]],"date-time":"2025-04-09T06:15:42Z","timestamp":1744179342267,"version":"3.37.3"},"reference-count":92,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T00:00:00Z","timestamp":1719792000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T00:00:00Z","timestamp":1719792000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,5,3]],"date-time":"2024-05-03T00:00:00Z","timestamp":1714694400000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100010198","name":"Ministerio de Econom\u00eda y Competitividad","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100010198","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100018693","name":"H2020","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100018693","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100011011","name":"Junta de Andaluc\u00eda","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100011011","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Medical Image Analysis"],"published-print":{"date-parts":[[2024,7]]},"DOI":"10.1016\/j.media.2024.103191","type":"journal-article","created":{"date-parts":[[2024,5,4]],"date-time":"2024-05-04T09:46:14Z","timestamp":1714815974000},"page":"103191","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":4,"special_numbering":"C","title":["A systematic comparison of deep learning methods for Gleason grading and scoring"],"prefix":"10.1016","volume":"95","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-5474-107X","authenticated-orcid":false,"given":"Juan P.","family":"Dominguez-Morales","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-5849-8003","authenticated-orcid":false,"given":"Lourdes","family":"Duran-Lopez","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-5273-5741","authenticated-orcid":false,"given":"Niccol\u00f2","family":"Marini","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-9466-485X","authenticated-orcid":false,"given":"Saturnino","family":"Vicente-Diaz","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-6056-740X","authenticated-orcid":false,"given":"Alejandro","family":"Linares-Barranco","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-5397-2063","authenticated-orcid":false,"given":"Manfredo","family":"Atzori","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-6800-9878","authenticated-orcid":false,"given":"Henning","family":"M\u00fcller","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"3","key":"10.1016\/j.media.2024.103191_b1","doi-asserted-by":"crossref","first-page":"286","DOI":"10.1002\/path.5331","article-title":"Computational pathology definitions, best practices, and recommendations for regulatory guidance: a white paper from the Digital Pathology Association","volume":"249","author":"Abels","year":"2019","journal-title":"J. Pathol."},{"key":"10.1016\/j.media.2024.103191_b2","doi-asserted-by":"crossref","first-page":"99540","DOI":"10.1109\/ACCESS.2019.2929365","article-title":"Going deep in medical image analysis: concepts, methods, challenges, and future directions","volume":"7","author":"Altaf","year":"2019","journal-title":"IEEE Access"},{"year":"2016","series-title":"Diagnostic Pathology: Genitourinary E-Book","author":"Amin","key":"10.1016\/j.media.2024.103191_b3"},{"issue":"11","key":"10.1016\/j.media.2024.103191_b4","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s10916-018-1088-1","article-title":"Medical image analysis using convolutional neural networks: a review","volume":"42","author":"Anwar","year":"2018","journal-title":"J. Med. Syst."},{"year":"2018","series-title":"Coupling weak and strong supervision for classification of prostate cancer histopathology images","author":"Arvaniti","key":"10.1016\/j.media.2024.103191_b5"},{"issue":"1","key":"10.1016\/j.media.2024.103191_b6","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41598-018-30535-1","article-title":"Automated gleason grading of prostate cancer tissue microarrays via deep learning","volume":"8","author":"Arvaniti","year":"2018","journal-title":"Sci. Rep."},{"issue":"1","key":"10.1016\/j.media.2024.103191_b7","doi-asserted-by":"crossref","first-page":"74","DOI":"10.1038\/aja.2008.19","article-title":"Prostate cancer: diagnosis and staging","volume":"11","author":"Borley","year":"2009","journal-title":"Asian J. Androl."},{"key":"10.1016\/j.media.2024.103191_b8","first-page":"1","article-title":"Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge","author":"Bulten","year":"2022","journal-title":"Nat. Med."},{"issue":"2","key":"10.1016\/j.media.2024.103191_b9","doi-asserted-by":"crossref","first-page":"233","DOI":"10.1016\/S1470-2045(19)30739-9","article-title":"Automated deep-learning system for gleason grading of prostate cancer using biopsies: a diagnostic study","volume":"21","author":"Bulten","year":"2020","journal-title":"Lancet Oncol."},{"issue":"2","key":"10.1016\/j.media.2024.103191_b10","doi-asserted-by":"crossref","DOI":"10.3390\/info11020125","article-title":"Albumentations: Fast and flexible image augmentations","volume":"11","author":"Buslaev","year":"2020","journal-title":"Information"},{"issue":"8","key":"10.1016\/j.media.2024.103191_b11","doi-asserted-by":"crossref","first-page":"1301","DOI":"10.1038\/s41591-019-0508-1","article-title":"Clinical-grade computational pathology using weakly supervised deep learning on whole slide images","volume":"25","author":"Campanella","year":"2019","journal-title":"Nat. Med."},{"issue":"1","key":"10.1016\/j.media.2024.103191_b12","doi-asserted-by":"crossref","first-page":"12","DOI":"10.1177\/1066896913517939","article-title":"The wonderful colors of the hematoxylin\u2013eosin stain in diagnostic surgical pathology","volume":"22","author":"Chan","year":"2014","journal-title":"Int. J. Surg. Pathol."},{"key":"10.1016\/j.media.2024.103191_b13","unstructured":"Chang, H., Loss, L.A., Parvin, B., 2012. Nuclear segmentation in H&E sections via multi-reference graph cut (MRGC). In: International Symposium Biomedical Imaging."},{"key":"10.1016\/j.media.2024.103191_b14","series-title":"International Conference on Machine Learning","first-page":"1597","article-title":"A simple framework for contrastive learning of visual representations","author":"Chen","year":"2020"},{"issue":"1","key":"10.1016\/j.media.2024.103191_b15","first-page":"58","article-title":"The evolving gleason grading system","volume":"28","author":"Chen","year":"2016","journal-title":"Chin. J. Cancer Res."},{"key":"10.1016\/j.media.2024.103191_b16","series-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"519","article-title":"Multiple instance learning with center embeddings for histopathology classification","author":"Chikontwe","year":"2020"},{"key":"10.1016\/j.media.2024.103191_b17","article-title":"Self supervised contrastive learning for digital histopathology","volume":"7","author":"Ciga","year":"2022","journal-title":"Mach. Learn. Appl."},{"issue":"6","key":"10.1016\/j.media.2024.103191_b18","doi-asserted-by":"crossref","first-page":"1045","DOI":"10.1007\/s10278-013-9622-7","article-title":"The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository","volume":"26","author":"Clark","year":"2013","journal-title":"J. Digit. Imaging"},{"issue":"1","key":"10.1016\/j.media.2024.103191_b19","doi-asserted-by":"crossref","first-page":"37","DOI":"10.1177\/001316446002000104","article-title":"A coefficient of agreement for nominal scales","volume":"20","author":"Cohen","year":"1960","journal-title":"Educ. Psychol. Meas."},{"year":"2020","series-title":"Self-supervision closes the gap between weak and strong supervision in histology","author":"Dehaene","key":"10.1016\/j.media.2024.103191_b20"},{"key":"10.1016\/j.media.2024.103191_b21","series-title":"2009 IEEE Conference on Computer Vision and Pattern Recognition","first-page":"248","article-title":"Imagenet: A large-scale hierarchical image database","author":"Deng","year":"2009"},{"issue":"4","key":"10.1016\/j.media.2024.103191_b22","doi-asserted-by":"crossref","first-page":"470","DOI":"10.1007\/s11684-020-0782-9","article-title":"Deep learning in digital pathology image analysis: a survey","volume":"14","author":"Deng","year":"2020","journal-title":"Front. Med."},{"issue":"4\u20135","key":"10.1016\/j.media.2024.103191_b23","doi-asserted-by":"crossref","first-page":"198","DOI":"10.1016\/j.compmedimag.2007.02.002","article-title":"Computer-aided diagnosis in medical imaging: historical review, current status and future potential","volume":"31","author":"Doi","year":"2007","journal-title":"Comput. Med. Imaging Graph."},{"key":"10.1016\/j.media.2024.103191_b24","doi-asserted-by":"crossref","first-page":"128613","DOI":"10.1109\/ACCESS.2020.3008868","article-title":"PROMETEO: A CNN-based computer-aided diagnosis system for WSI prostate cancer detection","volume":"8","author":"Duran-Lopez","year":"2020","journal-title":"IEEE Access"},{"key":"10.1016\/j.media.2024.103191_b25","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2021.104743","article-title":"Wide & deep neural network model for patch aggregation in CNN-based prostate cancer detection systems","volume":"136","author":"Duran-Lopez","year":"2021","journal-title":"Comput. Biol. Med."},{"issue":"3","key":"10.1016\/j.media.2024.103191_b26","doi-asserted-by":"crossref","first-page":"335","DOI":"10.1038\/labinvest.2016.151","article-title":"Larger core size has superior technical and analytical accuracy in bladder tissue microarray","volume":"97","author":"Eskaros","year":"2017","journal-title":"Lab. Invest."},{"issue":"23\u201333","key":"10.1016\/j.media.2024.103191_b27","first-page":"4321","article-title":"Whole slide imaging in pathology: advantages, limitations, and emerging perspectives","volume":"7","author":"Farahani","year":"2015","journal-title":"Pathol. Lab. Med. Int."},{"key":"10.1016\/j.media.2024.103191_b28","series-title":"2019 IEEE 16th International Symposium on Biomedical Imaging","first-page":"1869","article-title":"SNOW: Semi-supervised, noisy and\/or weak data for deep learning in digital pathology","author":"Foucart","year":"2019"},{"year":"2013","series-title":"An empirical investigation of catastrophic forgetting in gradient-based neural networks","author":"Goodfellow","key":"10.1016\/j.media.2024.103191_b29"},{"key":"10.1016\/j.media.2024.103191_b30","doi-asserted-by":"crossref","unstructured":"Hashimoto, N., Fukushima, D., Koga, R., Takagi, Y., Ko, K., Kohno, K., Nakaguro, M., Nakamura, S., Hontani, H., Takeuchi, I., 2020. Multi-scale domain-adversarial multiple-instance CNN for cancer subtype classification with unannotated histopathological images. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition. pp. 3852\u20133861.","DOI":"10.1109\/CVPR42600.2020.00391"},{"key":"10.1016\/j.media.2024.103191_b31","doi-asserted-by":"crossref","unstructured":"He, K., Fan, H., Wu, Y., Xie, S., Girshick, R., 2020. Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition. pp. 9729\u20139738.","DOI":"10.1109\/CVPR42600.2020.00975"},{"key":"10.1016\/j.media.2024.103191_b32","doi-asserted-by":"crossref","unstructured":"Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q., 2017. Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 4700\u20134708.","DOI":"10.1109\/CVPR.2017.243"},{"key":"10.1016\/j.media.2024.103191_b33","series-title":"International Conference on Machine Learning","first-page":"2127","article-title":"Attention-based deep multiple instance learning","author":"Ilse","year":"2018"},{"key":"10.1016\/j.media.2024.103191_b34","series-title":"Handbook of Medical Image Computing and Computer Assisted Intervention","first-page":"521","article-title":"Deep multiple instance learning for digital histopathology","author":"Ilse","year":"2020"},{"key":"10.1016\/j.media.2024.103191_b35","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1200\/CCI.18.00157","article-title":"HistoQC: an open-source quality control tool for digital pathology slides","volume":"3","author":"Janowczyk","year":"2019","journal-title":"JCO Clin. Cancer Inform."},{"key":"10.1016\/j.media.2024.103191_b36","first-page":"20689","article-title":"Additive mil: Intrinsically interpretable multiple instance learning for pathology","volume":"35","author":"Javed","year":"2022","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.media.2024.103191_b37","doi-asserted-by":"crossref","unstructured":"Ke, Z., Wang, D., Yan, Q., Ren, J., Lau, R.W., 2019. Dual student: Breaking the limits of the teacher in semi-supervised learning. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision. pp. 6728\u20136736.","DOI":"10.1109\/ICCV.2019.00683"},{"year":"2021","series-title":"DiagSet: a dataset for prostate cancer histopathological image classification","author":"Koziarski","key":"10.1016\/j.media.2024.103191_b38"},{"issue":"3","key":"10.1016\/j.media.2024.103191_b39","doi-asserted-by":"crossref","first-page":"357","DOI":"10.1016\/j.humpath.2012.05.024","article-title":"Characterizing the development of visual search expertise in pathology residents viewing whole slide images","volume":"44","author":"Krupinski","year":"2013","journal-title":"Hum. Pathol."},{"key":"10.1016\/j.media.2024.103191_b40","doi-asserted-by":"crossref","unstructured":"Lai, Z., Wang, C., Oliveira, L.C., Dugger, B.N., Cheung, S.C., Chuah, C.N., 2021. Joint Semi-supervised and Active Learning for Segmentation of Gigapixel Pathology Images with Cost-Effective Labeling. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision. pp. 591\u2013600.","DOI":"10.1109\/ICCVW54120.2021.00072"},{"issue":"6","key":"10.1016\/j.media.2024.103191_b41","doi-asserted-by":"crossref","first-page":"646","DOI":"10.1016\/S0046-8177(97)90172-6","article-title":"Observer variability in the histopathological reporting of needle biopsy specimens of the prostate","volume":"28","author":"Lessells","year":"1997","journal-title":"Hum. Pathol."},{"key":"10.1016\/j.media.2024.103191_b42","doi-asserted-by":"crossref","unstructured":"Li, B., Li, Y., Eliceiri, K.W., 2021a. Dual-stream multiple instance learning network for whole slide image classification with self-supervised contrastive learning. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition. pp. 14318\u201314328.","DOI":"10.1109\/CVPR46437.2021.01409"},{"issue":"4","key":"10.1016\/j.media.2024.103191_b43","doi-asserted-by":"crossref","first-page":"945","DOI":"10.1109\/TMI.2018.2875868","article-title":"Path R-CNN for prostate cancer diagnosis and gleason grading of histological images","volume":"38","author":"Li","year":"2018","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.media.2024.103191_b44","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2021.104253","article-title":"A multi-resolution model for histopathology image classification and localization with multiple instance learning","volume":"131","author":"Li","year":"2021","journal-title":"Comput. Biol. Med."},{"year":"2020","series-title":"A survey of convolutional neural networks: analysis, applications, and prospects","author":"Li","key":"10.1016\/j.media.2024.103191_b45"},{"key":"10.1016\/j.media.2024.103191_b46","doi-asserted-by":"crossref","DOI":"10.1109\/TKDE.2021.3090866","article-title":"Self-supervised learning: Generative or contrastive","author":"Liu","year":"2021","journal-title":"IEEE Trans. Knowl. Data Eng."},{"issue":"6","key":"10.1016\/j.media.2024.103191_b47","doi-asserted-by":"crossref","first-page":"555","DOI":"10.1038\/s41551-020-00682-w","article-title":"Data-efficient and weakly supervised computational pathology on whole-slide images","volume":"5","author":"Lu","year":"2021","journal-title":"Nat. Biomed. Eng."},{"key":"10.1016\/j.media.2024.103191_b48","doi-asserted-by":"crossref","first-page":"170","DOI":"10.1016\/j.media.2016.06.037","article-title":"Image analysis and machine learning in digital pathology: Challenges and opportunities","volume":"33","author":"Madabhushi","year":"2016","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.media.2024.103191_b49","doi-asserted-by":"crossref","unstructured":"Marini, N., Atzori, M., Ot\u00e1lora, S., Marchand-Maillet, S., M\u00fcller, H., 2021a. H&E-adversarial network: a convolutional neural network to learn stain-invariant features through Hematoxylin & Eosin regression. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision. pp. 601\u2013610.","DOI":"10.1109\/ICCVW54120.2021.00073"},{"issue":"1","key":"10.1016\/j.media.2024.103191_b50","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41746-022-00635-4","article-title":"Unleashing the potential of digital pathology data by training computer-aided diagnosis models without human annotations","volume":"5","author":"Marini","year":"2022","journal-title":"NPJ Digit. Med."},{"key":"10.1016\/j.media.2024.103191_b51","series-title":"MICCAI Workshop on Computational Pathology","first-page":"170","article-title":"Multi-scale task multiple instance learning for the classification of digital pathology images with global annotations","author":"Marini","year":"2021"},{"key":"10.1016\/j.media.2024.103191_b52","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2021.102165","article-title":"Semi-supervised training of deep convolutional neural networks with heterogeneous data and few local annotations: An experiment on prostate histopathology image classification","volume":"73","author":"Marini","year":"2021","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.media.2024.103191_b53","series-title":"Data-Enabled Intelligence for Medical Technology Innovation, Volume I","article-title":"Multi_scale_tools: a python library to exploit multi-scale whole slide images","author":"Marini","year":"2022"},{"issue":"3","key":"10.1016\/j.media.2024.103191_b54","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s11934-016-0576-4","article-title":"Grading of prostate cancer: past, present, and future","volume":"17","author":"Matoso","year":"2016","journal-title":"Curr. Urol. Rep."},{"issue":"4","key":"10.1016\/j.media.2024.103191_b55","doi-asserted-by":"crossref","first-page":"222","DOI":"10.1016\/S0936-6555(97)80005-2","article-title":"Interobserver variation in prostate cancer gleason scoring: are there implications for the design of clinical trials and treatment strategies?","volume":"9","author":"McLean","year":"1997","journal-title":"Clin. Oncol."},{"issue":"1","key":"10.1016\/j.media.2024.103191_b56","first-page":"1","article-title":"Development and validation of a deep learning algorithm for improving gleason scoring of prostate cancer","volume":"2","author":"Nagpal","year":"2019","journal-title":"NPJ Digit. Med."},{"issue":"5","key":"10.1016\/j.media.2024.103191_b57","doi-asserted-by":"crossref","first-page":"e253","DOI":"10.1016\/S1470-2045(19)30154-8","article-title":"Digital pathology and artificial intelligence","volume":"20","author":"Niazi","year":"2019","journal-title":"Lancet Oncol."},{"key":"10.1016\/j.media.2024.103191_b58","doi-asserted-by":"crossref","first-page":"167","DOI":"10.1016\/j.media.2018.09.005","article-title":"Automatic grading of prostate cancer in digitized histopathology images: Learning from multiple experts","volume":"50","author":"Nir","year":"2018","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.media.2024.103191_b59","doi-asserted-by":"crossref","first-page":"198","DOI":"10.3389\/fbioe.2019.00198","article-title":"Staining invariant features for improving generalization of deep convolutional neural networks in computational pathology","author":"Ot\u00e1lora","year":"2019","journal-title":"Front. Bioeng. Biotechnol."},{"key":"10.1016\/j.media.2024.103191_b60","first-page":"113200L","article-title":"Systematic comparison of deep learning strategies for weakly supervised gleason grading","volume":"vol. 11320","author":"Ot\u00e1lora","year":"2020"},{"key":"10.1016\/j.media.2024.103191_b61","series-title":"Interpretable and Annotation-Efficient Learning for Medical Image Computing","first-page":"193","article-title":"Semi-weakly supervised learning for prostate cancer image classification with teacher-student deep convolutional networks","author":"Ot\u00e1lora","year":"2020"},{"issue":"1","key":"10.1016\/j.media.2024.103191_b62","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s12880-021-00609-0","article-title":"Combining weakly and strongly supervised learning improves strong supervision in gleason pattern classification","volume":"21","author":"Ot\u00e1lora","year":"2021","journal-title":"BMC Med. Imag."},{"issue":"9","key":"10.1016\/j.media.2024.103191_b63","doi-asserted-by":"crossref","DOI":"10.1016\/j.prp.2020.153040","article-title":"The future of pathology is digital","volume":"216","author":"Pallua","year":"2020","journal-title":"Pathol. Res. Pract."},{"key":"10.1016\/j.media.2024.103191_b64","article-title":"Pytorch: An imperative style, high-performance deep learning library","volume":"32","author":"Paszke","year":"2019","journal-title":"Adv. Neural Inf. Process. Syst."},{"issue":"1","key":"10.1016\/j.media.2024.103191_b65","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41598-018-24876-0","article-title":"A cluster-then-label semi-supervised learning approach for pathology image classification","volume":"8","author":"Peikari","year":"2018","journal-title":"Sci. Rep."},{"key":"10.1016\/j.media.2024.103191_b66","series-title":"2020 IEEE 20th International Conference on Bioinformatics and Bioengineering","first-page":"563","article-title":"Semi-supervised classification of noisy, gigapixel histology images","author":"Pulido","year":"2020"},{"key":"10.1016\/j.media.2024.103191_b67","unstructured":"Ramasesh, V.V., Lewkowycz, A., Dyer, E., 2021. Effect of scale on catastrophic forgetting in neural networks. In: International Conference on Learning Representations."},{"issue":"2","key":"10.1016\/j.media.2024.103191_b68","doi-asserted-by":"crossref","first-page":"63","DOI":"10.14740\/wjon1191","article-title":"Epidemiology of prostate cancer","volume":"10","author":"Rawla","year":"2019","journal-title":"World J. Oncol."},{"key":"10.1016\/j.media.2024.103191_b69","doi-asserted-by":"crossref","first-page":"323","DOI":"10.1007\/978-3-319-65981-7_12","article-title":"Deep learning for medical image processing: Overview, challenges and the future","author":"Razzak","year":"2018","journal-title":"Classif. BioApps"},{"issue":"2","key":"10.1016\/j.media.2024.103191_b70","first-page":"104","article-title":"An audit of inter-observer variability in Gleason grading of prostate cancer biopsies: The experience of central pathology review in the North West of England","volume":"2","author":"Salmo","year":"2015","journal-title":"Integr. Cancer Sci. Ther."},{"key":"10.1016\/j.media.2024.103191_b71","doi-asserted-by":"crossref","first-page":"387","DOI":"10.1590\/0100-3984.2019.0049","article-title":"Artificial intelligence, machine learning, computer-aided diagnosis, and radiomics: advances in imaging towards to precision medicine","volume":"52","author":"Santos","year":"2019","journal-title":"Radiol. Brasileira"},{"key":"10.1016\/j.media.2024.103191_b72","doi-asserted-by":"crossref","DOI":"10.1109\/ACCESS.2022.3143345","article-title":"Coupling semi-supervised and multiple instance learning for histopathological image classification","author":"Schmidt","year":"2022","journal-title":"IEEE Access"},{"key":"10.1016\/j.media.2024.103191_b73","doi-asserted-by":"crossref","DOI":"10.4103\/2153-3539.116866","article-title":"Relationship between magnification and resolution in digital pathology systems","volume":"4","author":"Sellaro","year":"2013","journal-title":"J. Pathol. Inform."},{"key":"10.1016\/j.media.2024.103191_b74","first-page":"2136","article-title":"Transmil: Transformer based correlated multiple instance learning for whole slide image classification","volume":"34","author":"Shao","year":"2021","journal-title":"Adv. Neural Inf. Process. Syst."},{"year":"2020","series-title":"Teacher-student chain for efficient semi-supervised histology image classification","author":"Shaw","key":"10.1016\/j.media.2024.103191_b75"},{"key":"10.1016\/j.media.2024.103191_b76","doi-asserted-by":"crossref","DOI":"10.1016\/j.cmpb.2020.105637","article-title":"Going deeper through the Gleason scoring scale: An automatic end-to-end system for histology prostate grading and cribriform pattern detection","volume":"195","author":"Silva-Rodr\u00edguez","year":"2020","journal-title":"Comput. Methods Programs Biomed."},{"key":"10.1016\/j.media.2024.103191_b77","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2021.102256","article-title":"Self-supervised driven consistency training for annotation efficient histopathology image analysis","volume":"75","author":"Srinidhi","year":"2022","journal-title":"Med. Image Anal."},{"year":"2019","series-title":"Pathologist-level grading of prostate biopsies with artificial intelligence","author":"Str\u00f6m","key":"10.1016\/j.media.2024.103191_b78"},{"key":"10.1016\/j.media.2024.103191_b79","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2019.101544","article-title":"Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology","volume":"58","author":"Tellez","year":"2019","journal-title":"Med. Image Anal."},{"issue":"7","key":"10.1016\/j.media.2024.103191_b80","doi-asserted-by":"crossref","first-page":"411","DOI":"10.1038\/s42256-020-0200-7","article-title":"High-accuracy prostate cancer pathology using deep learning","volume":"2","author":"Tolkach","year":"2020","journal-title":"Nat. Mach. Intell."},{"key":"10.1016\/j.media.2024.103191_b81","first-page":"101400O","article-title":"Convolutional neural networks for an automatic classification of prostate tissue slides with high-grade gleason score","volume":"vol. 10140","author":"del Toro","year":"2017"},{"issue":"11","key":"10.1016\/j.media.2024.103191_b82","doi-asserted-by":"crossref","first-page":"855","DOI":"10.1038\/s41551-019-0472-6","article-title":"No pixel-level annotations needed","volume":"3","author":"van der Laak","year":"2019","journal-title":"Nat. Biomed. Eng."},{"issue":"5","key":"10.1016\/j.media.2024.103191_b83","doi-asserted-by":"crossref","first-page":"775","DOI":"10.1038\/s41591-021-01343-4","article-title":"Deep learning in histopathology: the path to the clinic","volume":"27","author":"Van der Laak","year":"2021","journal-title":"Nat. Med."},{"key":"10.1016\/j.media.2024.103191_b84","article-title":"Attention is all you need","volume":"30","author":"Vaswani","year":"2017","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.media.2024.103191_b85","series-title":"ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing","first-page":"31","article-title":"A comparison of five multiple instance learning pooling functions for sound event detection with weak labeling","author":"Wang","year":"2019"},{"key":"10.1016\/j.media.2024.103191_b86","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2022.102559","article-title":"Transformer-based unsupervised contrastive learning for histopathological image classification","volume":"81","author":"Wang","year":"2022","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.media.2024.103191_b87","doi-asserted-by":"crossref","unstructured":"Xie, S., Girshick, R., Doll\u00e1r, P., Tu, Z., He, K., 2017. Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1492\u20131500.","DOI":"10.1109\/CVPR.2017.634"},{"year":"2019","series-title":"Billion-scale semi-supervised learning for image classification","author":"Yalniz","key":"10.1016\/j.media.2024.103191_b88"},{"key":"10.1016\/j.media.2024.103191_b89","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2020.101789","article-title":"Whole slide images based cancer survival prediction using attention guided deep multiple instance learning networks","volume":"65","author":"Yao","year":"2020","journal-title":"Med. Image Anal."},{"year":"2021","series-title":"A histopathology study comparing contrastive semi-supervised and fully supervised learning","author":"Zhang","key":"10.1016\/j.media.2024.103191_b90"},{"key":"10.1016\/j.media.2024.103191_b91","series-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"521","article-title":"Deep semi-supervised knowledge distillation for overlapping cervical cell instance segmentation","author":"Zhou","year":"2020"},{"key":"10.1016\/j.media.2024.103191_b92","article-title":"Radiology data from the cancer genome atlas prostate adenocarcinoma [tcga-prad] collection","volume":"9","author":"Zuley","year":"2016","journal-title":"Cancer Imag. Arch"}],"container-title":["Medical Image Analysis"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1361841524001166?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1361841524001166?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,5,28]],"date-time":"2024-05-28T08:18:43Z","timestamp":1716884323000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1361841524001166"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,7]]},"references-count":92,"alternative-id":["S1361841524001166"],"URL":"https:\/\/doi.org\/10.1016\/j.media.2024.103191","relation":{},"ISSN":["1361-8415"],"issn-type":[{"type":"print","value":"1361-8415"}],"subject":[],"published":{"date-parts":[[2024,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A systematic comparison of deep learning methods for Gleason grading and scoring","name":"articletitle","label":"Article Title"},{"value":"Medical Image Analysis","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.media.2024.103191","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 The Author(s). Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"103191"}}