{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T19:06:08Z","timestamp":1732043168796},"reference-count":101,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,2,1]],"date-time":"2024-02-01T00:00:00Z","timestamp":1706745600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,2,1]],"date-time":"2024-02-01T00:00:00Z","timestamp":1706745600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,2,1]],"date-time":"2024-02-01T00:00:00Z","timestamp":1706745600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,2,1]],"date-time":"2024-02-01T00:00:00Z","timestamp":1706745600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,2,1]],"date-time":"2024-02-01T00:00:00Z","timestamp":1706745600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,2,1]],"date-time":"2024-02-01T00:00:00Z","timestamp":1706745600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,2,1]],"date-time":"2024-02-01T00:00:00Z","timestamp":1706745600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100010877","name":"Shenzhen Science and Technology Innovation Committee","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100010877","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Medical Image Analysis"],"published-print":{"date-parts":[[2024,2]]},"DOI":"10.1016\/j.media.2023.103061","type":"journal-article","created":{"date-parts":[[2023,12,7]],"date-time":"2023-12-07T17:23:46Z","timestamp":1701969826000},"page":"103061","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":103,"special_numbering":"C","title":["Segment anything model for medical images?"],"prefix":"10.1016","volume":"92","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-0126-1857","authenticated-orcid":false,"given":"Yuhao","family":"Huang","sequence":"first","affiliation":[]},{"given":"Xin","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Lian","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Han","family":"Zhou","sequence":"additional","affiliation":[]},{"given":"Ao","family":"Chang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0168-1779","authenticated-orcid":false,"given":"Xinrui","family":"Zhou","sequence":"additional","affiliation":[]},{"given":"Rusi","family":"Chen","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0009-0005-0997-1078","authenticated-orcid":false,"given":"Junxuan","family":"Yu","sequence":"additional","affiliation":[]},{"given":"Jiongquan","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Chaoyu","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Sijing","family":"Liu","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0009-0007-5695-0557","authenticated-orcid":false,"given":"Haozhe","family":"Chi","sequence":"additional","affiliation":[]},{"given":"Xindi","family":"Hu","sequence":"additional","affiliation":[]},{"given":"Kejuan","family":"Yue","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1281-6472","authenticated-orcid":false,"given":"Lei","family":"Li","sequence":"additional","affiliation":[]},{"given":"Vicente","family":"Grau","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5245-7518","authenticated-orcid":false,"given":"Deng-Ping","family":"Fan","sequence":"additional","affiliation":[]},{"given":"Fajin","family":"Dong","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9146-6003","authenticated-orcid":false,"given":"Dong","family":"Ni","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"5","key":"10.1016\/j.media.2023.103061_b1","doi-asserted-by":"crossref","first-page":"1655","DOI":"10.1109\/TMI.2019.2954477","article-title":"Neural segmentation of seeding ROIs (sROIs) for pre-surgical brain tractography","volume":"39","author":"Avital","year":"2019","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"1","key":"10.1016\/j.media.2023.103061_b2","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/sdata.2017.117","article-title":"Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features","volume":"4","author":"Bakas","year":"2017","journal-title":"Sci. Data"},{"key":"10.1016\/j.media.2023.103061_b3","series-title":"Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge","author":"Bakas","year":"2018"},{"key":"10.1016\/j.media.2023.103061_b4","doi-asserted-by":"crossref","first-page":"99","DOI":"10.1016\/j.compmedimag.2015.02.007","article-title":"WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians","volume":"43","author":"Bernal","year":"2015","journal-title":"Comput. Med. Imaging Graph."},{"issue":"11","key":"10.1016\/j.media.2023.103061_b5","doi-asserted-by":"crossref","first-page":"2514","DOI":"10.1109\/TMI.2018.2837502","article-title":"Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved?","volume":"37","author":"Bernard","year":"2018","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.media.2023.103061_b6","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2022.102680","article-title":"The liver tumor segmentation benchmark (lits)","volume":"84","author":"Bilic","year":"2023","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.media.2023.103061_b7","series-title":"UniverSeg: Universal medical image segmentation","author":"Butoi","year":"2023"},{"issue":"12","key":"10.1016\/j.media.2023.103061_b8","doi-asserted-by":"crossref","first-page":"3543","DOI":"10.1109\/TMI.2021.3090082","article-title":"Multi-centre, multi-vendor and multi-disease cardiac segmentation: the M&Ms challenge","volume":"40","author":"Campello","year":"2021","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"10","key":"10.1016\/j.media.2023.103061_b9","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pbio.1000502","article-title":"An integrated micro-and macroarchitectural analysis of the drosophila brain by computer-assisted serial section electron microscopy","volume":"8","author":"Cardona","year":"2010","journal-title":"PLoS Biol."},{"key":"10.1016\/j.media.2023.103061_b10","series-title":"Monai: An open-source framework for deep learning in healthcare","author":"Cardoso","year":"2022"},{"key":"10.1016\/j.media.2023.103061_b11","series-title":"MA-SAM: Modality-agnostic SAM adaptation for 3D medical image segmentation","author":"Chen","year":"2023"},{"key":"10.1016\/j.media.2023.103061_b12","doi-asserted-by":"crossref","unstructured":"Chen, X., Zhao, Z., Zhang, Y., Duan, M., Qi, D., Zhao, H., 2022. Focalclick: Towards practical interactive image segmentation. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition. pp. 1300\u20131309.","DOI":"10.1109\/CVPR52688.2022.00136"},{"key":"10.1016\/j.media.2023.103061_b13","series-title":"SAM-Med2D","author":"Cheng","year":"2023"},{"key":"10.1016\/j.media.2023.103061_b14","series-title":"2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018)","first-page":"168","article-title":"Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic)","author":"Codella","year":"2018"},{"key":"10.1016\/j.media.2023.103061_b15","series-title":"Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (isic)","author":"Codella","year":"2019"},{"issue":"11","key":"10.1016\/j.media.2023.103061_b16","doi-asserted-by":"crossref","first-page":"1451","DOI":"10.1109\/TMI.2006.880587","article-title":"Generalized overlap measures for evaluation and validation in medical image analysis","volume":"25","author":"Crum","year":"2006","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.media.2023.103061_b17","unstructured":"Dataset, ., 2015. IXI Dataset, [EB\/OL], https:\/\/brain-development.org\/ixi-dataset\/."},{"key":"10.1016\/j.media.2023.103061_b18","unstructured":"Dataset, ., 2020. Chest CT Segmentation Dataset, [EB\/OL], https:\/\/www.kaggle.com\/datasets\/polomarco\/chest-ct-segmentation."},{"key":"10.1016\/j.media.2023.103061_b19","unstructured":"Dataset, ., 2021. 4C2021 C04 TLS01 Dataset, [EB\/OL], https:\/\/aistudio.baidu.com\/aistudio\/projectdetail\/1952488?channelType=1&channel=1."},{"key":"10.1016\/j.media.2023.103061_b20","series-title":"Segment anything model (SAM) for digital pathology: Assess zero-shot segmentation on whole slide imaging","author":"Deng","year":"2023"},{"key":"10.1016\/j.media.2023.103061_b21","unstructured":"Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al., 2020. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. In: International Conference on Learning Representations."},{"key":"10.1016\/j.media.2023.103061_b22","doi-asserted-by":"crossref","first-page":"199","DOI":"10.1016\/j.media.2018.12.001","article-title":"MILD-net: Minimal information loss dilated network for gland instance segmentation in colon histology images","volume":"52","author":"Graham","year":"2019","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.media.2023.103061_b23","series-title":"Accuracy of segment-anything model (SAM) in medical image segmentation tasks","author":"He","year":"2023"},{"key":"10.1016\/j.media.2023.103061_b24","doi-asserted-by":"crossref","unstructured":"He, K., Chen, X., Xie, S., Li, Y., Doll\u00e1r, P., Girshick, R., 2022. Masked autoencoders are scalable vision learners. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition. pp. 16000\u201316009.","DOI":"10.1109\/CVPR52688.2022.01553"},{"key":"10.1016\/j.media.2023.103061_b25","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2020.101722","article-title":"Dense biased networks with deep priori anatomy and hard region adaptation: Semi-supervised learning for fine renal artery segmentation","volume":"63","author":"He","year":"2020","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.media.2023.103061_b26","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2021.102055","article-title":"Meta grayscale adaptive network for 3D integrated renal structures segmentation","volume":"71","author":"He","year":"2021","journal-title":"Med. Image Anal."},{"issue":"8","key":"10.1016\/j.media.2023.103061_b27","doi-asserted-by":"crossref","first-page":"1251","DOI":"10.1109\/TMI.2009.2013851","article-title":"Comparison and evaluation of methods for liver segmentation from CT datasets","volume":"28","author":"Heimann","year":"2009","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.media.2023.103061_b28","series-title":"The KiTS19 challenge data: 300 kidney tumor cases with clinical context, CT semantic segmentations, and surgical outcomes","author":"Heller","year":"2020"},{"key":"10.1016\/j.media.2023.103061_b29","series-title":"Pattern Recognition. ICPR International Workshops and Challenges: Virtual Event, January 10-15, 2021, Proceedings, Part VIII","first-page":"263","article-title":"The EndoTect 2020 challenge: evaluation and comparison of classification, segmentation and inference time for endoscopy","author":"Hicks","year":"2021"},{"issue":"3","key":"10.1016\/j.media.2023.103061_b30","doi-asserted-by":"crossref","first-page":"203","DOI":"10.1109\/42.845178","article-title":"Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response","volume":"19","author":"Hoover","year":"2000","journal-title":"IEEE Trans. Med. imaging"},{"key":"10.1016\/j.media.2023.103061_b31","series-title":"Medical Image Computing and Computer Assisted Intervention\u2013MICCAI 2021: 24th International Conference, Strasbourg, France, September 27\u2013October 1, 2021, Proceedings, Part I 24","first-page":"493","article-title":"Flip learning: Erase to segment","author":"Huang","year":"2021"},{"key":"10.1016\/j.media.2023.103061_b32","article-title":"PALM: PAthoLogic myopia challenge","author":"Huazhu","year":"2019","journal-title":"Comput. Vis. Med. Imaging"},{"issue":"2","key":"10.1016\/j.media.2023.103061_b33","doi-asserted-by":"crossref","first-page":"203","DOI":"10.1038\/s41592-020-01008-z","article-title":"nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation","volume":"18","author":"Isensee","year":"2021","journal-title":"Nat. Methods"},{"issue":"6","key":"10.1016\/j.media.2023.103061_b34","first-page":"475","article-title":"Two public chest X-ray datasets for computer-aided screening of pulmonary diseases","volume":"4","author":"Jaeger","year":"2014","journal-title":"Quant. Imaging Med. Surg."},{"key":"10.1016\/j.media.2023.103061_b35","series-title":"MultiMedia Modeling","first-page":"218","article-title":"Kvasir-instrument: Diagnostic and therapeutic tool segmentation dataset in gastrointestinal endoscopy","author":"Jha","year":"2021"},{"key":"10.1016\/j.media.2023.103061_b36","series-title":"International Conference on Multimedia Modeling","first-page":"451","article-title":"Kvasir-seg: A segmented polyp dataset","author":"Jha","year":"2020"},{"key":"10.1016\/j.media.2023.103061_b37","series-title":"AMOS: A large-scale abdominal multi-organ benchmark for versatile medical image segmentation","author":"Ji","year":"2022"},{"key":"10.1016\/j.media.2023.103061_b38","series-title":"SAM struggles in concealed scenes\u2013empirical study on \u201csegment anything\u201d","author":"Ji","year":"2023"},{"key":"10.1016\/j.media.2023.103061_b39","series-title":"Segment anything is not always perfect: An investigation of SAM on different real-world applications","author":"Ji","year":"2023"},{"key":"10.1016\/j.media.2023.103061_b40","doi-asserted-by":"crossref","unstructured":"Ji, W., Yu, S., Wu, J., Ma, K., Bian, C., Bi, Q., Li, J., Liu, H., Cheng, L., Zheng, Y., 2021. Learning calibrated medical image segmentation via multi-rater agreement modeling. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition. pp. 12341\u201312351.","DOI":"10.1109\/CVPR46437.2021.01216"},{"key":"10.1016\/j.media.2023.103061_b41","series-title":"International Conference on Machine Learning","first-page":"4904","article-title":"Scaling up visual and vision-language representation learning with noisy text supervision","author":"Jia","year":"2021"},{"key":"10.1016\/j.media.2023.103061_b42","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2022.102443","article-title":"Thyroid nodule segmentation and classification in ultrasound images through intra-and inter-task consistent learning","volume":"79","author":"Kang","year":"2022","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.media.2023.103061_b43","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1016\/j.media.2016.01.004","article-title":"Evaluation of state-of-the-art segmentation algorithms for left ventricle infarct from late gadolinium enhancement MR images","volume":"30","author":"Karim","year":"2016","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.media.2023.103061_b44","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2020.101950","article-title":"CHAOS challenge-combined (CT-mr) healthy abdominal organ segmentation","volume":"69","author":"Kavur","year":"2021","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.media.2023.103061_b45","series-title":"Segment anything","author":"Kirillov","year":"2023"},{"issue":"3","key":"10.1016\/j.media.2023.103061_b46","doi-asserted-by":"crossref","first-page":"236","DOI":"10.1016\/0146-664X(82)90034-X","article-title":"Elliptic Fourier features of a closed contour","volume":"18","author":"Kuhl","year":"1982","journal-title":"Comput. Graph. Image Process."},{"issue":"9","key":"10.1016\/j.media.2023.103061_b47","doi-asserted-by":"crossref","first-page":"2198","DOI":"10.1109\/TMI.2019.2900516","article-title":"Deep learning for segmentation using an open large-scale dataset in 2D echocardiography","volume":"38","author":"Leclerc","year":"2019","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.media.2023.103061_b48","series-title":"MEDIAR: Harmony of data-centric and model-centric for multi-modality microscopy","author":"Lee","year":"2022"},{"key":"10.1016\/j.media.2023.103061_b49","unstructured":"Lee, S., Shim, H., Park, S.H., Yun, I.D., Lee, S.U., 2010. Learning local shape and appearance for segmentation of knee cartilage in 3D MRI. In: Medical Image Analysis for the Clinic: A Grand Challenge. in Proceedings of the 13th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2010), Beijing, China. pp. 231\u2013240."},{"key":"10.1016\/j.media.2023.103061_b50","doi-asserted-by":"crossref","first-page":"8","DOI":"10.1016\/j.compbiomed.2015.02.009","article-title":"Computer-aided detection and diagnosis for prostate cancer based on mono and multi-parametric MRI: a review","volume":"60","author":"Lema\u00eetre","year":"2015","journal-title":"Comput. Biol. Med."},{"issue":"12","key":"10.1016\/j.media.2023.103061_b51","doi-asserted-by":"crossref","first-page":"4023","DOI":"10.1109\/TMI.2020.3008871","article-title":"Self-supervised feature learning via exploiting multi-modal data for retinal disease diagnosis","volume":"39","author":"Li","year":"2020","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.media.2023.103061_b52","series-title":"2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","first-page":"1","article-title":"Automated segmentation of prostate MR images using prior knowledge enhanced random walker","author":"Li","year":"2013"},{"key":"10.1016\/j.media.2023.103061_b53","series-title":"Semantic-sam: Segment and recognize anything at any granularity","author":"Li","year":"2023"},{"key":"10.1016\/j.media.2023.103061_b54","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2022.102461","article-title":"Sketch guided and progressive growing GAN for realistic and editable ultrasound image synthesis","volume":"79","author":"Liang","year":"2022","journal-title":"Med. Image Anal."},{"issue":"1","key":"10.1016\/j.media.2023.103061_b55","doi-asserted-by":"crossref","first-page":"284","DOI":"10.1038\/s41597-021-01060-0","article-title":"A computed tomography vertebral segmentation dataset with anatomical variations and multi-vendor scanner data","volume":"8","author":"Liebl","year":"2021","journal-title":"Sci. Data"},{"issue":"2","key":"10.1016\/j.media.2023.103061_b56","doi-asserted-by":"crossref","first-page":"359","DOI":"10.1016\/j.media.2013.12.002","article-title":"Evaluation of prostate segmentation algorithms for MRI: the PROMISE12 challenge","volume":"18","author":"Litjens","year":"2014","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.media.2023.103061_b57","series-title":"SimpleClick: Interactive image segmentation with simple vision transformers","author":"Liu","year":"2022"},{"issue":"9","key":"10.1016\/j.media.2023.103061_b58","doi-asserted-by":"crossref","first-page":"4623","DOI":"10.1109\/JBHI.2022.3188710","article-title":"Full-resolution network and dual-threshold iteration for retinal vessel and coronary angiograph segmentation","volume":"26","author":"Liu","year":"2022","journal-title":"IEEE J. Biomed. Health Inf."},{"key":"10.1016\/j.media.2023.103061_b59","series-title":"SAMM (segment any medical model): A 3D slicer integration to SAM","author":"Liu","year":"2023"},{"issue":"4","key":"10.1016\/j.media.2023.103061_b60","article-title":"A vertebral segmentation dataset with fracture grading","volume":"2","author":"L\u00f6ffler","year":"2020","journal-title":"Radiol.: Artif. Intell."},{"key":"10.1016\/j.media.2023.103061_b61","doi-asserted-by":"crossref","unstructured":"Lucchi, A., Li, Y., Fua, P., 2013. Learning for structured prediction using approximate subgradient descent with working sets. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1987\u20131994.","DOI":"10.1109\/CVPR.2013.259"},{"key":"10.1016\/j.media.2023.103061_b62","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2022.102642","article-title":"WORD: A large scale dataset, benchmark and clinical applicable study for abdominal organ segmentation from CT image","volume":"82","author":"Luo","year":"2022","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.media.2023.103061_b63","series-title":"Segment anything in medical images","author":"Ma","year":"2023"},{"key":"10.1016\/j.media.2023.103061_b64","article-title":"The multi-modality cell segmentation challenge: towards universal solutions","author":"Ma","year":"2023","journal-title":"arXiv preprint arXiv:2308.05864"},{"issue":"10","key":"10.1016\/j.media.2023.103061_b65","doi-asserted-by":"crossref","first-page":"6695","DOI":"10.1109\/TPAMI.2021.3100536","article-title":"AbdomenCT-1K: Is abdominal organ segmentation a solved problem?","volume":"44","author":"Ma","year":"2022","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.media.2023.103061_b66","series-title":"Zero-shot performance of the segment anything model (SAM) in 2D medical imaging: A comprehensive evaluation and practical guidelines","author":"Mattjie","year":"2023"},{"key":"10.1016\/j.media.2023.103061_b67","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2023.102918","article-title":"Segment anything model for medical image analysis: an experimental study","volume":"89","author":"Mazurowski","year":"2023","journal-title":"Med. Image Anal."},{"issue":"10","key":"10.1016\/j.media.2023.103061_b68","doi-asserted-by":"crossref","first-page":"1993","DOI":"10.1109\/TMI.2014.2377694","article-title":"The multimodal brain tumor image segmentation benchmark (BRATS)","volume":"34","author":"Menze","year":"2014","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.media.2023.103061_b69","series-title":"Brain extraction comparing segment anything model (SAM) and FSL brain extraction tool","author":"Mohapatra","year":"2023"},{"issue":"1","key":"10.1016\/j.media.2023.103061_b70","doi-asserted-by":"crossref","first-page":"262","DOI":"10.1109\/TMI.2020.3025087","article-title":"SpineParseNet: spine parsing for volumetric MR image by a two-stage segmentation framework with semantic image representation","volume":"40","author":"Pang","year":"2020","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"1","key":"10.1016\/j.media.2023.103061_b71","doi-asserted-by":"crossref","first-page":"167","DOI":"10.1038\/s41597-021-00946-3","article-title":"An automatic multi-tissue human fetal brain segmentation benchmark using the fetal tissue annotation dataset","volume":"8","author":"Payette","year":"2021","journal-title":"Sci. Data"},{"key":"10.1016\/j.media.2023.103061_b72","series-title":"2004 2nd IEEE International Symposium on Biomedical Imaging: Nano To Macro (IEEE Cat No. 04EX821)","first-page":"632","article-title":"3D slicer","author":"Pieper","year":"2004"},{"key":"10.1016\/j.media.2023.103061_b73","doi-asserted-by":"crossref","DOI":"10.1002\/mp.16197","article-title":"HaN-Seg: The head and neck organ-at-risk CT & MR segmentation dataset","author":"Podobnik","year":"2023","journal-title":"Med. Phys."},{"issue":"3","key":"10.1016\/j.media.2023.103061_b74","doi-asserted-by":"crossref","first-page":"25","DOI":"10.3390\/data3030025","article-title":"Indian diabetic retinopathy image dataset (IDRiD): a database for diabetic retinopathy screening research","volume":"3","author":"Porwal","year":"2018","journal-title":"Data"},{"key":"10.1016\/j.media.2023.103061_b75","series-title":"European Conference on Computer Vision","first-page":"38","article-title":"Highly accurate dichotomous image segmentation","author":"Qin","year":"2022"},{"key":"10.1016\/j.media.2023.103061_b76","series-title":"Annotating 8000 abdominal CT volumes for multi-organ segmentation in three weeks","author":"Qu","year":"2023"},{"key":"10.1016\/j.media.2023.103061_b77","series-title":"International Conference on Machine Learning","first-page":"8748","article-title":"Learning transferable visual models from natural language supervision","author":"Radford","year":"2021"},{"key":"10.1016\/j.media.2023.103061_b78","series-title":"International Conference on Machine Learning","first-page":"8821","article-title":"Zero-shot text-to-image generation","author":"Ramesh","year":"2021"},{"key":"10.1016\/j.media.2023.103061_b79","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2021.102166","article-title":"Verse: A vertebrae labelling and segmentation benchmark for multi-detector CT images","volume":"73","author":"Sekuboyina","year":"2021","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.media.2023.103061_b80","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.media.2017.06.015","article-title":"Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge","volume":"42","author":"Setio","year":"2017","journal-title":"Med. Image Anal."},{"issue":"5","key":"10.1016\/j.media.2023.103061_b81","doi-asserted-by":"crossref","first-page":"849","DOI":"10.1016\/j.eururo.2010.11.037","article-title":"Laparoscopic partial nephrectomy with segmental renal artery clamping: technique and clinical outcomes","volume":"59","author":"Shao","year":"2011","journal-title":"Eur. Urol."},{"issue":"6","key":"10.1016\/j.media.2023.103061_b82","doi-asserted-by":"crossref","first-page":"1001","DOI":"10.1016\/j.eururo.2012.05.056","article-title":"Precise segmental renal artery clamping under the guidance of dual-source computed tomography angiography during laparoscopic partial nephrectomy","volume":"62","author":"Shao","year":"2012","journal-title":"Eur. Urol."},{"issue":"1","key":"10.1016\/j.media.2023.103061_b83","doi-asserted-by":"crossref","first-page":"171","DOI":"10.3171\/2019.9.JNS191949","article-title":"An artificial intelligence framework for automatic segmentation and volumetry of vestibular schwannomas from contrast-enhanced T1-weighted and high-resolution T2-weighted MRI","volume":"134","author":"Shapey","year":"2019","journal-title":"J. Neurosurg."},{"key":"10.1016\/j.media.2023.103061_b84","series-title":"A large annotated medical image dataset for the development and evaluation of segmentation algorithms","author":"Simpson","year":"2019"},{"key":"10.1016\/j.media.2023.103061_b85","doi-asserted-by":"crossref","first-page":"489","DOI":"10.1016\/j.media.2016.08.008","article-title":"Gland segmentation in colon histology images: The glas challenge contest","volume":"35","author":"Sirinukunwattana","year":"2017","journal-title":"Med. Image Anal."},{"issue":"5","key":"10.1016\/j.media.2023.103061_b86","doi-asserted-by":"crossref","first-page":"1363","DOI":"10.1109\/TMI.2021.3055428","article-title":"Multi-site infant brain segmentation algorithms: the iSeg-2019 challenge","volume":"40","author":"Sun","year":"2021","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.media.2023.103061_b87","first-page":"7537","article-title":"Fourier features let networks learn high frequency functions in low dimensional domains","volume":"33","author":"Tancik","year":"2020","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.media.2023.103061_b88","series-title":"Can SAM segment anything? When SAM meets camouflaged object detection","author":"Tang","year":"2023"},{"issue":"1","key":"10.1016\/j.media.2023.103061_b89","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/sdata.2018.161","article-title":"The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions","volume":"5","author":"Tschandl","year":"2018","journal-title":"Sci. Data"},{"key":"10.1016\/j.media.2023.103061_b90","series-title":"Artificial Intelligence in Medicine: 18th International Conference on Artificial Intelligence in Medicine, AIME 2020, Minneapolis, MN, USA, August 25\u201328, 2020, Proceedings 18","first-page":"249","article-title":"Weakly-supervised segmentation for disease localization in chest x-ray images","author":"Viniavskyi","year":"2020"},{"key":"10.1016\/j.media.2023.103061_b91","doi-asserted-by":"crossref","first-page":"135","DOI":"10.1016\/j.future.2020.02.054","article-title":"A deep learning based medical image segmentation technique in internet-of-medical-things domain","volume":"108","author":"Wang","year":"2020","journal-title":"Future Gener. Comput. Syst."},{"key":"10.1016\/j.media.2023.103061_b92","series-title":"AutoLaparo: A new dataset of integrated multi-tasks for image-guided surgical automation in laparoscopic hysterectomy","author":"Wang","year":"2022"},{"issue":"5","key":"10.1016\/j.media.2023.103061_b93","article-title":"TotalSegmentator: Robust segmentation of 104 anatomic structures in ct images","volume":"5","author":"Wasserthal","year":"2023","journal-title":"Radiol.: Artif. Intell."},{"key":"10.1016\/j.media.2023.103061_b94","series-title":"The confidence interval that wasn\u2019t: Bootstrapped \u201cconfidence intervals\u201d in l1-regularized partial correlation networks","author":"Williams","year":"2021"},{"key":"10.1016\/j.media.2023.103061_b95","series-title":"Medical SAM adapter: Adapting segment anything model for medical image segmentation","author":"Wu","year":"2023"},{"issue":"1","key":"10.1016\/j.media.2023.103061_b96","doi-asserted-by":"crossref","first-page":"261","DOI":"10.1038\/s41598-021-04247-y","article-title":"Colonoscopic image synthesis with generative adversarial network for enhanced detection of sessile serrated lesions using convolutional neural network","volume":"12","author":"Yoon","year":"2022","journal-title":"Sci. Rep."},{"issue":"12","key":"10.1016\/j.media.2023.103061_b97","doi-asserted-by":"crossref","first-page":"2631","DOI":"10.1109\/TMI.2016.2587062","article-title":"Robust retinal vessel segmentation via locally adaptive derivative frames in orientation scores","volume":"35","author":"Zhang","year":"2016","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.media.2023.103061_b98","series-title":"Kidney and Kidney Tumor Segmentation: MICCAI 2021 Challenge, KiTS 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021, Proceedings","first-page":"53","article-title":"A coarse-to-fine framework for the 2021 kidney and kidney tumor segmentation challenge","author":"Zhao","year":"2022"},{"key":"10.1016\/j.media.2023.103061_b99","series-title":"2019 International Conference on 3D Vision (3DV)","first-page":"85","article-title":"Iou loss for 2d\/3d object detection","author":"Zhou","year":"2019"},{"key":"10.1016\/j.media.2023.103061_b100","doi-asserted-by":"crossref","unstructured":"Zhou, Y., Li, Z., Bai, S., Wang, C., Chen, X., Han, M., Fishman, E., Yuille, A.L., 2019b. Prior-aware neural network for partially-supervised multi-organ segmentation. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision. pp. 10672\u201310681.","DOI":"10.1109\/ICCV.2019.01077"},{"key":"10.1016\/j.media.2023.103061_b101","series-title":"Can SAM segment polyps?","author":"Zhou","year":"2023"}],"container-title":["Medical Image Analysis"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1361841523003213?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1361841523003213?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,6,2]],"date-time":"2024-06-02T09:10:06Z","timestamp":1717319406000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1361841523003213"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,2]]},"references-count":101,"alternative-id":["S1361841523003213"],"URL":"https:\/\/doi.org\/10.1016\/j.media.2023.103061","relation":{},"ISSN":["1361-8415"],"issn-type":[{"value":"1361-8415","type":"print"}],"subject":[],"published":{"date-parts":[[2024,2]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Segment anything model for medical images?","name":"articletitle","label":"Article Title"},{"value":"Medical Image Analysis","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.media.2023.103061","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"103061"}}