{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,31]],"date-time":"2024-07-31T21:13:53Z","timestamp":1722460433410},"reference-count":76,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100000925","name":"National Health and Medical Research Council","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100000925","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Medical Image Analysis"],"published-print":{"date-parts":[[2022,11]]},"DOI":"10.1016\/j.media.2022.102562","type":"journal-article","created":{"date-parts":[[2022,8,9]],"date-time":"2022-08-09T15:57:38Z","timestamp":1660060658000},"page":"102562","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":5,"special_numbering":"C","title":["CAN3D: Fast 3D medical image segmentation via compact context aggregation"],"prefix":"10.1016","volume":"82","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-1884-1524","authenticated-orcid":false,"given":"Wei","family":"Dai","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7022-5975","authenticated-orcid":false,"given":"Boyeong","family":"Woo","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8436-8835","authenticated-orcid":false,"given":"Siyu","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Matthew","family":"Marques","sequence":"additional","affiliation":[]},{"given":"Craig","family":"Engstrom","sequence":"additional","affiliation":[]},{"given":"Peter B.","family":"Greer","sequence":"additional","affiliation":[]},{"given":"Stuart","family":"Crozier","sequence":"additional","affiliation":[]},{"given":"Jason A.","family":"Dowling","sequence":"additional","affiliation":[]},{"given":"Shekhar S.","family":"Chandra","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.media.2022.102562_b1","doi-asserted-by":"crossref","first-page":"109","DOI":"10.1016\/j.media.2018.11.009","article-title":"Automated segmentation of knee bone and cartilage combining statistical shape knowledge and convolutional neural networks: Data from the osteoarthritis initiative","volume":"52","author":"Ambellan","year":"2019","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.media.2022.102562_b2","doi-asserted-by":"crossref","first-page":"2481","DOI":"10.1109\/TPAMI.2016.2644615","article-title":"Segnet: A deep convolutional encoder\u2013decoder architecture for image segmentation","volume":"39","author":"Badrinarayanan","year":"2017","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"1","key":"10.1016\/j.media.2022.102562_b3","article-title":"Comprehensive survey on distance\/similarity measures between probability density functions","volume":"1","author":"Cha","year":"2007","journal-title":"City"},{"key":"10.1016\/j.media.2022.102562_b4","doi-asserted-by":"crossref","first-page":"1882","DOI":"10.1118\/1.4944498","article-title":"Urinary bladder segmentation in ct urography using deep-learning convolutional neural network and level sets","volume":"43","author":"Cha","year":"2016","journal-title":"Med. Phys."},{"key":"10.1016\/j.media.2022.102562_b5","doi-asserted-by":"crossref","first-page":"8070","DOI":"10.1088\/0031-9155\/61\/22\/8070","article-title":"Fast automated segmentation of multiple objects via spatially weighted shape learning","volume":"61","author":"Chandra","year":"2016","journal-title":"Phys. Med. Biol."},{"key":"10.1016\/j.media.2022.102562_b6","doi-asserted-by":"crossref","first-page":"1955","DOI":"10.1109\/TMI.2012.2211377","article-title":"Patient specific prostate segmentation in 3-D magnetic resonance images","volume":"31","author":"Chandra","year":"2012","journal-title":"IEEE Trans. Med. Imag."},{"key":"10.1016\/j.media.2022.102562_b7","doi-asserted-by":"crossref","first-page":"567","DOI":"10.1016\/j.media.2014.02.002","article-title":"Focused shape models for hip joint segmentation in 3D magnetic resonance images","volume":"18","author":"Chandra","year":"2014","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.media.2022.102562_b8","series-title":"Semantic image segmentation with deep convolutional nets and fully connected CRFs","author":"Chen","year":"2014"},{"key":"10.1016\/j.media.2022.102562_b9","doi-asserted-by":"crossref","first-page":"834","DOI":"10.1109\/TPAMI.2017.2699184","article-title":"Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs","volume":"40","author":"Chen","year":"2017","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.media.2022.102562_b10","series-title":"Rethinking atrous convolution for semantic image segmentation","author":"Chen","year":"2017"},{"key":"10.1016\/j.media.2022.102562_b11","series-title":"2017 IEEE International Conference on Computer Vision","first-page":"2516","article-title":"Fast image processing with fully-convolutional networks","author":"Chen","year":"2017"},{"key":"10.1016\/j.media.2022.102562_b12","doi-asserted-by":"crossref","unstructured":"Chen,\u00a0L., Zhu,\u00a0Y., Papandreou,\u00a0G., Schroff,\u00a0F., Adam,\u00a0H., 2018. Encoder\u2013decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision. ECCV, pp. 801\u2013818.","DOI":"10.1007\/978-3-030-01234-2_49"},{"key":"10.1016\/j.media.2022.102562_b13","series-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"424","article-title":"3D U-Net: learning dense volumetric segmentation from sparse annotation","author":"\u00c7i\u00e7ek","year":"2016"},{"key":"10.1016\/j.media.2022.102562_b14","series-title":"2021 IEEE 18th International Symposium on Biomedical Imaging","first-page":"1505","article-title":"CAN3D: Fast 3D knee MRI segmentation via compact context aggregation","author":"Dai","year":"2021"},{"key":"10.1016\/j.media.2022.102562_b15","doi-asserted-by":"crossref","first-page":"5482","DOI":"10.1002\/mp.13240","article-title":"Multiregion segmentation of bladder cancer structures in MRI with progressive dilated convolutional networks","volume":"45","author":"Dolz","year":"2018","journal-title":"Med. Phys."},{"key":"10.1016\/j.media.2022.102562_b16","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2020.101638","article-title":"Deep atlas network for efficient 3D left ventricle segmentation on echocardiography","volume":"61","author":"Dong","year":"2020","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.media.2022.102562_b17","series-title":"Medical Image Understanding and Analysis","first-page":"506","article-title":"Automatic brain tumor detection and segmentation using U-Net based fully convolutional networks","author":"Dong","year":"2017"},{"key":"10.1016\/j.media.2022.102562_b18","series-title":"Labelled weekly MR images of the male pelvis. V1. CSIRO. Data collection","author":"Dowling","year":"2021"},{"key":"10.1016\/j.media.2022.102562_b19","doi-asserted-by":"crossref","first-page":"1144","DOI":"10.1016\/j.ijrobp.2015.08.045","article-title":"Automatic substitute CT generation and contouring for MRI-alone external beam radiation therapy from standard MRI sequences","volume":"93","author":"Dowling","year":"2015","journal-title":"Int. J. Radiat. Oncol. * Biol. * Phys."},{"key":"10.1016\/j.media.2022.102562_b20","doi-asserted-by":"crossref","first-page":"1144","DOI":"10.1016\/j.ijrobp.2015.08.045","article-title":"Automatic substitute CT generation and contouring for MRI-alone external beam radiation therapy from standard MRI sequences","volume":"93","author":"Dowling","year":"2015","journal-title":"Int J. Radiat. Oncol. Biol. Phys"},{"key":"10.1016\/j.media.2022.102562_b21","doi-asserted-by":"crossref","DOI":"10.1016\/j.artmed.2020.101851","article-title":"A review on segmentation of knee articular cartilage: from conventional methods towards deep learning","author":"Ebrahimkhani","year":"2020","journal-title":"Artif. Intell. Med."},{"key":"10.1016\/j.media.2022.102562_b22","doi-asserted-by":"crossref","first-page":"1189","DOI":"10.1109\/TMI.2008.918330","article-title":"Automatic model-based segmentation of the heart in CT images","volume":"27","author":"Ecabert","year":"2008","journal-title":"IEEE Trans. Med. Imag."},{"key":"10.1016\/j.media.2022.102562_b23","doi-asserted-by":"crossref","first-page":"1422","DOI":"10.1002\/jmri.22188","article-title":"Segmentation of the quadratus lumborum muscle using statistical shape modeling","volume":"33","author":"Engstrom","year":"2011","journal-title":"J. Magn. Reson. Imag."},{"key":"10.1016\/j.media.2022.102562_b24","doi-asserted-by":"crossref","first-page":"175","DOI":"10.3758\/BF03193146","article-title":"G* power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences","volume":"39","author":"Faul","year":"2007","journal-title":"Behav. Res. Methods"},{"key":"10.1016\/j.media.2022.102562_b25","doi-asserted-by":"crossref","first-page":"262","DOI":"10.1016\/j.cmpb.2012.04.006","article-title":"A survey of prostate segmentation methodologies in ultrasound, magnetic resonance and computed tomography images","volume":"108","author":"Ghose","year":"2012","journal-title":"Comput. Methods Programs Biomed."},{"key":"10.1016\/j.media.2022.102562_b26","series-title":"Computer Vision At ECCV 2012","first-page":"870","article-title":"Joint classification-regression forests for spatially structured multi-object segmentation","author":"Glocker","year":"2012"},{"key":"10.1016\/j.media.2022.102562_b27","doi-asserted-by":"crossref","unstructured":"He,\u00a0K., Zhang,\u00a0X., Ren,\u00a0S., Sun,\u00a0J., 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 770\u2013778.","DOI":"10.1109\/CVPR.2016.90"},{"key":"10.1016\/j.media.2022.102562_b28","series-title":"Wavelets","first-page":"286","article-title":"A real-time algorithm for signal analysis with the help of the wavelet transform","author":"Holschneider","year":"1990"},{"key":"10.1016\/j.media.2022.102562_b29","series-title":"International MICCAI Brainlesion Workshop","first-page":"287","article-title":"Brain tumor segmentation and radiomics survival prediction: Contribution to the brats 2017 challenge","author":"Isensee","year":"2017"},{"key":"10.1016\/j.media.2022.102562_b30","series-title":"CNN-based segmentation of medical imaging data","author":"Kayalibay","year":"2017"},{"key":"10.1016\/j.media.2022.102562_b31","series-title":"Bayesian segnet: Model uncertainty in deep convolutional encoder\u2013decoder architectures for scene understanding","author":"Kendall","year":"2015"},{"key":"10.1016\/j.media.2022.102562_b32","doi-asserted-by":"crossref","first-page":"1407","DOI":"10.1118\/1.2842076","article-title":"Automatic segmentation of the prostate in 3D MR images by atlas matching using localized mutual information","volume":"35","author":"Klein","year":"2008","journal-title":"Med. Phys."},{"key":"10.1016\/j.media.2022.102562_b33","series-title":"A simple way to initialize recurrent networks of rectified linear units","author":"Le","year":"2015"},{"key":"10.1016\/j.media.2022.102562_b34","series-title":"International Conference on Information Processing in Medical Imaging","first-page":"348","article-title":"On the compactness, efficiency, and representation of 3D convolutional networks: brain parcellation as a pretext task","author":"Li","year":"2017"},{"key":"10.1016\/j.media.2022.102562_b35","doi-asserted-by":"crossref","first-page":"718","DOI":"10.1016\/j.neucom.2016.08.037","article-title":"Bounded activation functions for enhanced training stability of deep neural networks on visual pattern recognition problems","volume":"216","author":"Liew","year":"2016","journal-title":"Neurocomputing"},{"key":"10.1016\/j.media.2022.102562_b36","doi-asserted-by":"crossref","unstructured":"Lin,\u00a0T., Goyal,\u00a0P., Girshick,\u00a0R., He,\u00a0K., Doll\u00e1r,\u00a0P., 2017. Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 2980\u20132988.","DOI":"10.1109\/ICCV.2017.324"},{"key":"10.1016\/j.media.2022.102562_b37","series-title":"Fabric image representation encoding networks for large-scale 3d medical image analysis","author":"Liu","year":"2020"},{"key":"10.1016\/j.media.2022.102562_b38","series-title":"2015 IEEE Conference on Computer Vision and Pattern Recognition","first-page":"3431","article-title":"Fully convolutional networks for semantic segmentation","author":"Long","year":"2015"},{"key":"10.1016\/j.media.2022.102562_b39","doi-asserted-by":"crossref","first-page":"1752","DOI":"10.1002\/mp.13438","article-title":"U-net based deep learning bladder segmentation in ct urography","volume":"46","author":"Ma","year":"2019","journal-title":"Med. Phys."},{"key":"10.1016\/j.media.2022.102562_b40","doi-asserted-by":"crossref","first-page":"1579","DOI":"10.1118\/1.3315367","article-title":"Automated segmentation of the prostate in 3D MR images using a probabilistic atlas and a spatially constrained deformable model","volume":"37","author":"Martin","year":"2010","journal-title":"Med. Phys."},{"key":"10.1016\/j.media.2022.102562_b41","series-title":"2016 Fourth International Conference on 3D Vision","first-page":"565","article-title":"V-net: Fully convolutional neural networks for volumetric medical image segmentation","author":"Milletari","year":"2016"},{"key":"10.1016\/j.media.2022.102562_b42","series-title":"Image segmentation using deep learning: A survey","author":"Minaee","year":"2020"},{"key":"10.1016\/j.media.2022.102562_b43","doi-asserted-by":"crossref","unstructured":"Noh,\u00a0H., Hong,\u00a0S., Han,\u00a0B., 2015. Learning deconvolution network for semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 1520\u20131528.","DOI":"10.1109\/ICCV.2015.178"},{"key":"10.1016\/j.media.2022.102562_b44","doi-asserted-by":"crossref","first-page":"177","DOI":"10.1148\/radiol.2018172322","article-title":"Use of 2D U-Net convolutional neural networks for automated cartilage and meniscus segmentation of knee MR imaging data to determine relaxometry and morphometry","volume":"288","author":"Norman","year":"2018","journal-title":"Radiology"},{"key":"10.1016\/j.media.2022.102562_b45","doi-asserted-by":"crossref","first-page":"175","DOI":"10.1016\/j.semradonc.2014.02.005","article-title":"Counterpoint: opportunities and challenges of a magnetic resonance imaging-only radiotherapy work flow","volume":"24","author":"Nyholm","year":"2014","journal-title":"Semin. Radiat. Oncol."},{"key":"10.1016\/j.media.2022.102562_b46","series-title":"Enet: A deep neural network architecture for real-time semantic segmentation","author":"Paszke","year":"2016"},{"key":"10.1016\/j.media.2022.102562_b47","doi-asserted-by":"crossref","first-page":"1240","DOI":"10.1109\/TMI.2016.2538465","article-title":"Brain tumor segmentation using convolutional neural networks in MRI images","volume":"35","author":"Pereira","year":"2016","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.media.2022.102562_b48","doi-asserted-by":"crossref","first-page":"411","DOI":"10.1302\/0301-620X.90B4.20284","article-title":"The assessment of early osteoarthritis","volume":"90","author":"Pollard","year":"2008","journal-title":"J. Bone Joint Surg. Br."},{"key":"10.1016\/j.media.2022.102562_b49","series-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"246","article-title":"Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network","author":"Prasoon","year":"2013"},{"key":"10.1016\/j.media.2022.102562_b50","doi-asserted-by":"crossref","first-page":"271","DOI":"10.1049\/ip-vis:19952007","article-title":"Thresholding based on histogram approximation","volume":"142","author":"Ramesh","year":"1995","journal-title":"IEEE Proc. Vis. Image Signal Process."},{"key":"10.1016\/j.media.2022.102562_b51","series-title":"2017 IEEE Intelligent Vehicles Symposium","first-page":"1789","article-title":"Efficient convnet for real-time semantic segmentation","author":"Romera","year":"2017"},{"key":"10.1016\/j.media.2022.102562_b52","series-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"234","article-title":"U-net: Convolutional networks for biomedical image segmentation","author":"Ronneberger","year":"2015"},{"key":"10.1016\/j.media.2022.102562_b53","doi-asserted-by":"crossref","first-page":"1170","DOI":"10.1109\/TMI.2015.2482920","article-title":"Improving computer-aided detection using convolutional neural networks and random view aggregation","volume":"35","author":"Roth","year":"2015","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.media.2022.102562_b54","doi-asserted-by":"crossref","first-page":"155","DOI":"10.1016\/j.media.2010.09.001","article-title":"Robust statistical shape models for MRI bone segmentation in presence of small field of view","volume":"15","author":"Schmid","year":"2011","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.media.2022.102562_b55","doi-asserted-by":"crossref","unstructured":"Seim,\u00a0H., Kainmueller,\u00a0D., Lamecker,\u00a0H., Bindernagel,\u00a0M., Malinowski,\u00a0J., Zachow,\u00a0S., 2010. Model-based auto-segmentation of knee bones and cartilage in MRI data. In: Proc. Medical Image Analysis for the Clinic: A Grand Challenge. Bejing, China. pp. 215\u2013223.","DOI":"10.54294\/t2bzlq"},{"key":"10.1016\/j.media.2022.102562_b56","unstructured":"Sharma,\u00a0N., Ray,\u00a0A.K., 2006. Computer aided segmentation of medical images based on hybridized approach of edge and region based techniques. In: Proc. Int. Conf. Math. Biol. pp. 150\u2013155."},{"key":"10.1016\/j.media.2022.102562_b57","series-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"569","article-title":"Bayesian voxdrn: A probabilistic deep voxelwise dilated residual network for whole heart segmentation from 3D MR images","author":"Shi","year":"2018"},{"key":"10.1016\/j.media.2022.102562_b58","doi-asserted-by":"crossref","first-page":"1524","DOI":"10.1016\/j.neuroimage.2009.09.005","article-title":"A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions","volume":"49","author":"Shiee","year":"2010","journal-title":"NeuroImage"},{"key":"10.1016\/j.media.2022.102562_b59","series-title":"International Conference on Information Processing in Medical Imaging","first-page":"492","article-title":"Joint CS-MRI reconstruction and segmentation with a unified deep network","author":"Sun","year":"2019"},{"key":"10.1016\/j.media.2022.102562_b60","first-page":"1484","article-title":"Atlas based method for the automated segmentation and quantification of knee features: Data from the osteoarthritis initiative","author":"Tamez-Pe\u00f1a","year":"2011"},{"key":"10.1016\/j.media.2022.102562_b61","doi-asserted-by":"crossref","first-page":"1638","DOI":"10.1109\/TMI.2012.2201498","article-title":"Multifeature landmark-free active appearance models: Application to prostate MRI segmentation","volume":"31","author":"Toth","year":"2012","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.media.2022.102562_b62","doi-asserted-by":"crossref","unstructured":"Tran,\u00a0D., Bourdev,\u00a0L., Fergus,\u00a0R., Torresani,\u00a0L., Paluri,\u00a0M., 2015. Learning spatiotemporal features with 3D convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 4489\u20134497.","DOI":"10.1109\/ICCV.2015.510"},{"key":"10.1016\/j.media.2022.102562_b63","doi-asserted-by":"crossref","first-page":"1310","DOI":"10.1109\/TMI.2010.2046908","article-title":"N4ITK: Improved N3 bias correction","volume":"29","author":"Tustison","year":"2010","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.media.2022.102562_b64","series-title":"Instance normalization: The missing ingredient for fast stylization","author":"Ulyanov","year":"2016"},{"key":"10.1016\/j.media.2022.102562_b65","series-title":"2018 IEEE Winter Conference on Applications of Computer Vision","first-page":"1451","article-title":"Understanding convolution for semantic segmentation","author":"Wang","year":"2018"},{"key":"10.1016\/j.media.2022.102562_b66","doi-asserted-by":"crossref","first-page":"509","DOI":"10.1016\/0167-8655(96)00006-2","article-title":"Comparison of several approaches for the segmentation of texture images","volume":"17","author":"Wang","year":"1996","journal-title":"Pattern Recognit. Lett."},{"issue":"56","key":"10.1016\/j.media.2022.102562_b67","article-title":"Automatic brain tumor segmentation based on cascaded convolutional neural networks with uncertainty estimation","volume":"13","author":"Wang","year":"2019","journal-title":"Front. Comput. Neurosci."},{"issue":"85","key":"10.1016\/j.media.2022.102562_b68","article-title":"Classification of Alzheimer\u2019s disease based on eight-layer convolutional neural network with leaky rectified linear unit and max pooling","volume":"42","author":"Wang","year":"2018","journal-title":"J. Med. Syst."},{"key":"10.1016\/j.media.2022.102562_b69","article-title":"Deep high-resolution representation learning for visual recognition","author":"Wang","year":"2020","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.media.2022.102562_b70","first-page":"67","article-title":"Three generations of medical image segmentation: Methods and available software","volume":"9","author":"Withey","year":"2007","journal-title":"Int. J. Bioelectromagn."},{"key":"10.1016\/j.media.2022.102562_b71","article-title":"A multi-path 2.5 dimensional convolutional neural network system for segmenting stroke lesions in brain MRI images","volume":"25","author":"Xue","year":"2020","journal-title":"NeuroImage: Clin."},{"key":"10.1016\/j.media.2022.102562_b72","doi-asserted-by":"crossref","unstructured":"Yang,\u00a0M., Yu,\u00a0K., Zhang,\u00a0C., Li,\u00a0Z., Yang,\u00a0K., 2018. Dense ASPP for semantic segmentation in street scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3684\u20133692.","DOI":"10.1109\/CVPR.2018.00388"},{"key":"10.1016\/j.media.2022.102562_b73","series-title":"Multi-scale context aggregation by dilated convolutions","author":"Yu","year":"2015"},{"key":"10.1016\/j.media.2022.102562_b74","doi-asserted-by":"crossref","unstructured":"Yu,\u00a0F., Koltun,\u00a0V., Funkhouser,\u00a0T., 2017. Dilated residual networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 472\u2013480.","DOI":"10.1109\/CVPR.2017.75"},{"key":"10.1016\/j.media.2022.102562_b75","doi-asserted-by":"crossref","first-page":"214","DOI":"10.1016\/j.neuroimage.2014.12.061","article-title":"Deep convolutional neural networks for multi-modality isointense infant brain image segmentation","volume":"108","author":"Zhang","year":"2015","journal-title":"NeuroImage"},{"key":"10.1016\/j.media.2022.102562_b76","doi-asserted-by":"crossref","first-page":"1856","DOI":"10.1109\/TMI.2019.2959609","article-title":"Unet++: Redesigning skip connections to exploit multiscale features in image segmentation","volume":"39","author":"Zhou","year":"2019","journal-title":"IEEE Trans. Med. Imaging"}],"container-title":["Medical Image Analysis"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1361841522002067?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1361841522002067?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,5,16]],"date-time":"2024-05-16T11:57:28Z","timestamp":1715860648000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1361841522002067"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,11]]},"references-count":76,"alternative-id":["S1361841522002067"],"URL":"https:\/\/doi.org\/10.1016\/j.media.2022.102562","relation":{},"ISSN":["1361-8415"],"issn-type":[{"value":"1361-8415","type":"print"}],"subject":[],"published":{"date-parts":[[2022,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"CAN3D: Fast 3D medical image segmentation via compact context aggregation","name":"articletitle","label":"Article Title"},{"value":"Medical Image Analysis","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.media.2022.102562","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"102562"}}