{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,9]],"date-time":"2024-07-09T04:57:12Z","timestamp":1720501032966},"reference-count":68,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100003625","name":"Ministry of Health and Welfare","doi-asserted-by":"publisher","award":["HI18C0022","HI18C2383"],"id":[{"id":"10.13039\/501100003625","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100003710","name":"Korea Health Industry Development Institute","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100003710","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Medical Image Analysis"],"published-print":{"date-parts":[[2022,10]]},"DOI":"10.1016\/j.media.2022.102489","type":"journal-article","created":{"date-parts":[[2022,5,21]],"date-time":"2022-05-21T23:29:10Z","timestamp":1653175750000},"page":"102489","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":10,"special_numbering":"C","title":["Improved performance and robustness of multi-task representation learning with consistency loss between pretexts for intracranial hemorrhage identification in head CT"],"prefix":"10.1016","volume":"81","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-7582-9484","authenticated-orcid":false,"given":"Sunggu","family":"Kyung","sequence":"first","affiliation":[]},{"given":"Keewon","family":"Shin","sequence":"additional","affiliation":[]},{"given":"Hyunsu","family":"Jeong","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9659-897X","authenticated-orcid":false,"given":"Ki Duk","family":"Kim","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7641-3827","authenticated-orcid":false,"given":"Jooyoung","family":"Park","sequence":"additional","affiliation":[]},{"given":"Kyungjin","family":"Cho","sequence":"additional","affiliation":[]},{"given":"Jeong Hyun","family":"Lee","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0068-9413","authenticated-orcid":false,"given":"GilSun","family":"Hong","sequence":"additional","affiliation":[]},{"given":"Namkug","family":"Kim","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.media.2022.102489_bib0001","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2020.104037","article-title":"Multi-task deep learning based CT imaging analysis for COVID-19 pneumonia: classification and segmentation","volume":"126","author":"Amyar","year":"2020","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.media.2022.102489_bib0002","unstructured":"Atito, S., Awais, M., Kittler, J., 2021. Sit: self-supervised vision transformer. arXiv preprint arXiv:2104.03602."},{"key":"10.1016\/j.media.2022.102489_bib0003","series-title":"Proceedings of the IEEE 16th International Symposium on Biomedical Imaging","first-page":"1567","article-title":"Improved ICH classification using task-dependent learning","author":"Bar","year":"2019"},{"key":"10.1016\/j.media.2022.102489_bib0004","doi-asserted-by":"crossref","first-page":"1798","DOI":"10.1109\/TPAMI.2013.50","article-title":"Representation learning: a review and new perspectives","volume":"35","author":"Bengio","year":"2013","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.media.2022.102489_bib0005","doi-asserted-by":"crossref","first-page":"125","DOI":"10.3390\/info11020125","article-title":"Albumentations: fast and flexible image augmentations","volume":"11","author":"Buslaev","year":"2020","journal-title":"Information"},{"key":"10.1016\/j.media.2022.102489_bib0006","doi-asserted-by":"crossref","first-page":"1609","DOI":"10.3174\/ajnr.A5742","article-title":"Hybrid 3D\/2D convolutional neural network for hemorrhage evaluation on head CT","volume":"39","author":"Chang","year":"2018","journal-title":"AJNR Am. J. Neuroradiol."},{"key":"10.1016\/j.media.2022.102489_bib0007","unstructured":"Chen, S., Ma, K., Zheng, Y., 2019. Med3d: transfer learning for 3d medical image analysis. arXiv preprint arXiv:1904.00625."},{"key":"10.1016\/j.media.2022.102489_bib0008","series-title":"Proceedings of the International Conference on Machine Learning. PMLR","first-page":"794","article-title":"Gradnorm: Gradient normalization for adaptive loss balancing in deep multitask networks","author":"Chen","year":"2018"},{"key":"10.1016\/j.media.2022.102489_bib0009","doi-asserted-by":"crossref","first-page":"837","DOI":"10.2307\/2531595","article-title":"Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach","author":"DeLong","year":"1988","journal-title":"Biometrics"},{"key":"10.1016\/j.media.2022.102489_bib0010","series-title":"Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases","first-page":"779","article-title":"Self-supervised multi-task representation learning for sequential medical images","author":"Dong","year":"2021"},{"key":"10.1016\/j.media.2022.102489_bib0011","series-title":"Parts2Whole: Self-supervised Contrastive Learning via Reconstruction, Domain Adaptation and Representation Transfer, and Distributed and Collaborative Learning","first-page":"85","author":"Feng","year":"2020"},{"key":"10.1016\/j.media.2022.102489_bib0012","series-title":"Proceedings of the IEEE Engineering in Medicine and Biology 27th Annual Conference","first-page":"7186","article-title":"Evaluation of segmentation algorithms for medical imaging","author":"Fenster","year":"2006"},{"key":"10.1016\/j.media.2022.102489_bib0013","series-title":"Essentials of radiologic science","author":"Fosbinder","year":"2011"},{"key":"10.1016\/j.media.2022.102489_bib0014","series-title":"Proceedings of the IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018)","first-page":"281","article-title":"Radnet: Radiologist level accuracy using deep learning for hemorrhage detection in ct scans","author":"Grewal","year":"2018"},{"key":"10.1016\/j.media.2022.102489_bib0015","series-title":"Proceedings of the IEEE 17th International Symposium on Biomedical Imaging (ISBI)","first-page":"118","article-title":"Simultaneous classification and segmentation of intracranial hemorrhage using a fully convolutional neural network","author":"Guo","year":"2020"},{"key":"10.1016\/j.media.2022.102489_bib0016","series-title":"Proceedings of the IEEE\/CVF International Conference on Computer Vision","first-page":"4918","article-title":"Rethinking imagenet pre-training","author":"He","year":"2019"},{"key":"10.1016\/j.media.2022.102489_bib0017","series-title":"Proceedings of the IEEE International Conference on Computer Vision","first-page":"2961","article-title":"Mask r-cnn","author":"He","year":"2017"},{"key":"10.1016\/j.media.2022.102489_bib0018","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"770","article-title":"Deep residual learning for image recognition","author":"He","year":"2016"},{"key":"10.1016\/j.media.2022.102489_bib0019","doi-asserted-by":"crossref","unstructured":"Hinton, G.E., Salakhutdinov, R.R.J., 2006. Reducing the dimensionality of data with neural networks. 313, 504-507.","DOI":"10.1126\/science.1127647"},{"key":"10.1016\/j.media.2022.102489_bib0020","doi-asserted-by":"crossref","unstructured":"Howard, J., Ruder, S., 2018. Universal language model fine-tuning for text classification. arXiv preprint arXiv:1801.06146.","DOI":"10.18653\/v1\/P18-1031"},{"key":"10.1016\/j.media.2022.102489_bib0021","doi-asserted-by":"crossref","first-page":"14","DOI":"10.3390\/data5010014","article-title":"Intracranial hemorrhage segmentation using a deep convolutional model","volume":"5","author":"Hssayeni","year":"2020","journal-title":"Data"},{"key":"10.1016\/j.media.2022.102489_bib0022","series-title":"Proceedings of the MICCAI Workshop on Multi-Atlas Labeling and Statistical Fusion","first-page":"28","article-title":"Validation of appearance-model based segmentation with patch-based refinement on medial temporal lobe structures","author":"Hu","year":"2011"},{"key":"10.1016\/j.media.2022.102489_bib0023","doi-asserted-by":"crossref","first-page":"203","DOI":"10.1038\/s41592-020-01008-z","article-title":"nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation","volume":"18","author":"Isensee","year":"2021","journal-title":"Nat. Methods"},{"key":"10.1016\/j.media.2022.102489_bib0024","doi-asserted-by":"crossref","first-page":"153","DOI":"10.1016\/j.acra.2019.11.002","article-title":"Value of triage by artificial intelligence","volume":"27","author":"Jha","year":"2020","journal-title":"Acad. Radiol."},{"key":"10.1016\/j.media.2022.102489_bib0025","unstructured":"Kendall, A., Gal, Y., 2017. What uncertainties do we need in bayesian deep learning for computer vision? arXiv preprint arXiv:1703.04977."},{"key":"10.1016\/j.media.2022.102489_bib0026","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"7482","article-title":"Multi-task learning using uncertainty to weigh losses for scene geometry and semantics","author":"Kendall","year":"2018"},{"key":"10.1016\/j.media.2022.102489_bib0027","unstructured":"Kingma, D.P., Ba, J., 2014. Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980."},{"key":"10.1016\/j.media.2022.102489_bib0028","doi-asserted-by":"crossref","first-page":"987","DOI":"10.17762\/turcomat.v12i2.1111","article-title":"An Efficient ensemble of brain tumour segmentation and classification using machine learning and deep learning based inception networks","volume":"12","author":"Kirithika","year":"2021","journal-title":"Turk. J. Comput. Math. Educ. (TURCOMAT)"},{"key":"10.1016\/j.media.2022.102489_bib0029","doi-asserted-by":"crossref","first-page":"3521","DOI":"10.1073\/pnas.1611835114","article-title":"Overcoming catastrophic forgetting in neural networks","volume":"114","author":"Kirkpatrick","year":"2017","journal-title":"Proc. Natl. Acad. Sci."},{"key":"10.1016\/j.media.2022.102489_bib0030","doi-asserted-by":"crossref","first-page":"22737","DOI":"10.1073\/pnas.1908021116","article-title":"Expert-level detection of acute intracranial hemorrhage on head computed tomography using deep learning","volume":"116","author":"Kuo","year":"2019","journal-title":"Proc. Nat. Acad. Sci. U.S.A."},{"key":"10.1016\/j.media.2022.102489_bib0031","doi-asserted-by":"crossref","unstructured":"Liu, P., Qiu, X., Huang, X., 2017. Adversarial multi-task learning for text classification. arXiv preprint arXiv:1704.05742.","DOI":"10.18653\/v1\/P17-1001"},{"key":"10.1016\/j.media.2022.102489_bib0032","series-title":"Proceedings of the AAAI Conference on Artificial Intelligence","first-page":"9977","article-title":"Loss-balanced task weighting to reduce negative transfer in multi-task learning","author":"Liu","year":"2019"},{"key":"10.1016\/j.media.2022.102489_bib0033","unstructured":"Lones, M.A., 2021. How to avoid machine learning pitfalls: a guide for academic researchers. arXiv preprint arXiv:2108.02497."},{"key":"10.1016\/j.media.2022.102489_bib0034","doi-asserted-by":"crossref","DOI":"10.1088\/1742-6596\/978\/1\/012092","article-title":"Classification of stroke disease using convolutional neural network","author":"Marbun","year":"2018","journal-title":"J. Phys. Conf. Ser."},{"key":"10.1016\/j.media.2022.102489_bib0035","doi-asserted-by":"crossref","first-page":"848","DOI":"10.1016\/j.procs.2020.09.080","article-title":"Combining multi-task learning with transfer learning for biomedical named entity recognition","volume":"176","author":"Mehmood","year":"2020","journal-title":"Procedia Comput. Sci."},{"key":"10.1016\/j.media.2022.102489_bib0036","unstructured":"MONAI Consortium, 2020. MONAI: Medical Open Network For AI."},{"key":"10.1016\/j.media.2022.102489_bib0037","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2020.104115","article-title":"A scoping review of transfer learning research on medical image analysis using ImageNet","volume":"128","author":"Morid","year":"2021","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.media.2022.102489_bib0038","doi-asserted-by":"crossref","unstructured":"Nguyen, N.T., Tran, D.Q., Nguyen, N.T., Nguyen, H.Q., 2020. A CNN-LSTM architecture for detection of intracranial hemorrhage on CT scans. arXiv preprint arXiv:2005.10992.","DOI":"10.1101\/2020.04.17.20070193"},{"key":"10.1016\/j.media.2022.102489_bib0039","article-title":"Active reprioritization of the reading worklist using artificial intelligence has a beneficial effect on the turnaround time for interpretation of head CT with intracranial hemorrhage","volume":"3","author":"O'Neill","year":"2020","journal-title":"Radiol. Artif. Intell."},{"key":"10.1016\/j.media.2022.102489_bib0040","doi-asserted-by":"crossref","first-page":"302","DOI":"10.1007\/s12262-012-0803-2","article-title":"Intracerebral hemorrhage score and volume as an independent predictor of mortality in primary intracerebral hemorrhage patients","volume":"77","author":"Panchal","year":"2015","journal-title":"Indian J. Surg."},{"key":"10.1016\/j.media.2022.102489_bib0041","doi-asserted-by":"crossref","first-page":"1770","DOI":"10.1007\/s003300000800","article-title":"Intracranial hemorrhage: principles of CT and MRI interpretation","volume":"11","author":"Parizel","year":"2001","journal-title":"Eur. Radiol."},{"key":"10.1016\/j.media.2022.102489_bib0042","doi-asserted-by":"crossref","first-page":"17858","DOI":"10.1038\/s41598-019-54491-6","article-title":"Intracerebral haemorrhage segmentation in non-contrast CT","volume":"9","author":"Patel","year":"2019","journal-title":"Sci. Rep."},{"key":"10.1016\/j.media.2022.102489_bib0043","doi-asserted-by":"crossref","first-page":"92355","DOI":"10.1109\/ACCESS.2019.2927792","article-title":"Image level training and prediction: intracranial hemorrhage identification in 3D non-contrast CT","volume":"7","author":"Patel","year":"2019","journal-title":"IEEE Access"},{"key":"10.1016\/j.media.2022.102489_bib0044","unstructured":"Qin, R., Liu, Q., Gao, G., Huang, D., Wang, Y., 2020. MRDet: a multi-head network for accurate oriented object detection in aerial images. arXiv preprint arXiv:2012.13135."},{"key":"10.1016\/j.media.2022.102489_bib0045","doi-asserted-by":"crossref","first-page":"35","DOI":"10.1023\/B:VLSI.0000028532.53893.82","article-title":"Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement","volume":"38","author":"Reza","year":"2004","journal-title":"J. VLSI Signal Process. Syst. Signal Image Video Technol."},{"key":"10.1016\/j.media.2022.102489_bib0046","series-title":"Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"234","article-title":"U-net: convolutional networks for biomedical image segmentation","author":"Ronneberger","year":"2015"},{"key":"10.1016\/j.media.2022.102489_bib0047","series-title":"Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"421","article-title":"Concurrent spatial and channel \u2018squeeze & excitation'in fully convolutional networks","author":"Roy","year":"2018"},{"key":"10.1016\/j.media.2022.102489_bib0048","unstructured":"Salman, H., Ilyas, A., Engstrom, L., Kapoor, A., Madry, A., 2020. Do adversarially robust imagenet models transfer better? arXiv preprint arXiv:2007.08489."},{"key":"10.1016\/j.media.2022.102489_bib0049","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"1874","article-title":"Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network","author":"Shi","year":"2016"},{"key":"10.1016\/j.media.2022.102489_bib0050","doi-asserted-by":"crossref","first-page":"1285","DOI":"10.1109\/TMI.2016.2528162","article-title":"Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning","volume":"35","author":"Shin","year":"2016","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.media.2022.102489_bib0051","article-title":"Shallow 3D CNN for detecting acute brain hemorrhage from medical imaging sensors","author":"Singh","year":"2020","journal-title":"IEEE Sens. J."},{"key":"10.1016\/j.media.2022.102489_bib0052","doi-asserted-by":"crossref","first-page":"1449","DOI":"10.3390\/diagnostics11081449","article-title":"Brain hemorrhage classification in CT scan images using minimalist machine learning","volume":"11","author":"Solorio-Ram\u00edrez","year":"2021","journal-title":"Diagnostics"},{"key":"10.1016\/j.media.2022.102489_bib0053","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"11563","article-title":"Revisiting the sibling head in object detector","author":"Song","year":"2020"},{"key":"10.1016\/j.media.2022.102489_bib0054","series-title":"Proceedings of the International Conference on Machine Learning. PMLR","first-page":"9120","article-title":"Which tasks should be learned together in multi-task learning?","author":"Standley","year":"2020"},{"key":"10.1016\/j.media.2022.102489_bib0055","doi-asserted-by":"crossref","first-page":"1299","DOI":"10.1109\/TMI.2016.2535302","article-title":"Convolutional neural networks for medical image analysis: Full training or fine tuning?","volume":"35","author":"Tajbakhsh","year":"2016","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.media.2022.102489_bib0056","unstructured":"Vandenhende, S., Georgoulis, S., De Brabandere, B., Van Gool, L., 2019. Branched multi-task networks: deciding what layers to share. arXiv preprint arXiv:1904.02920."},{"key":"10.1016\/j.media.2022.102489_bib0057","doi-asserted-by":"crossref","DOI":"10.1109\/TPAMI.2021.3054719","article-title":"Multi-task learning for dense prediction tasks: A survey","author":"Vandenhende","year":"2021","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.media.2022.102489_bib0058","doi-asserted-by":"crossref","DOI":"10.1016\/j.jacr.2021.03.005","article-title":"Diagnostic accuracy and failure mode analysis of a deep learning algorithm for the detection of intracranial hemorrhage","author":"Voter","year":"2021","journal-title":"J. Am. Coll. Radiol."},{"key":"10.1016\/j.media.2022.102489_bib0059","doi-asserted-by":"crossref","unstructured":"Wang, J.L., Farooq, H., Zhuang, H., Ibrahim, A.K.J.A.S., 2020. Segmentation of intracranial hemorrhage using semi-supervised multi-task attention-based U-net. 10, 3297.","DOI":"10.3390\/app10093297"},{"key":"10.1016\/j.media.2022.102489_bib0060","unstructured":"Wu, S., Zhang, H.R., R\u00e9, C., 2020a. Understanding and improving information transfer in multi-task learning. arXiv preprint arXiv:2005.00944."},{"key":"10.1016\/j.media.2022.102489_bib0061","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"10186","article-title":"Rethinking classification and localization for object detection","author":"Wu","year":"2020"},{"key":"10.1016\/j.media.2022.102489_bib0062","doi-asserted-by":"crossref","first-page":"125","DOI":"10.1148\/radiology.208.1.9646802","article-title":"Head trauma: CT scan interpretation by radiology residents versus staff radiologists","volume":"208","author":"Wysoki","year":"1998","journal-title":"Radiology"},{"key":"10.1016\/j.media.2022.102489_bib0063","series-title":"Proceedings of the Advances in Neural Information Processing Systems","first-page":"802","article-title":"Convolutional LSTM network: a machine learning approach for precipitation nowcasting","author":"Xingjian","year":"2015"},{"key":"10.1016\/j.media.2022.102489_bib0064","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"472","article-title":"Dilated residual networks","author":"Yu","year":"2017"},{"key":"10.1016\/j.media.2022.102489_bib0065","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"4106","article-title":"Pattern-affinitive propagation across depth, surface normal and semantic segmentation","author":"Zhang","year":"2019"},{"key":"10.1016\/j.media.2022.102489_bib0066","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"2921","article-title":"Learning deep features for discriminative localization","author":"Zhou","year":"2016"},{"key":"10.1016\/j.media.2022.102489_bib0067","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2020.101918","article-title":"Multi-task learning for segmentation and classification of tumors in 3D automated breast ultrasound images","volume":"70","author":"Zhou","year":"2021","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.media.2022.102489_bib0068","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2020.101840","article-title":"Models genesis","volume":"67","author":"Zhou","year":"2021","journal-title":"Med. Image Anal."}],"container-title":["Medical Image Analysis"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1361841522001360?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1361841522001360?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,5,16]],"date-time":"2024-05-16T11:53:16Z","timestamp":1715860396000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1361841522001360"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,10]]},"references-count":68,"alternative-id":["S1361841522001360"],"URL":"https:\/\/doi.org\/10.1016\/j.media.2022.102489","relation":{},"ISSN":["1361-8415"],"issn-type":[{"value":"1361-8415","type":"print"}],"subject":[],"published":{"date-parts":[[2022,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Improved performance and robustness of multi-task representation learning with consistency loss between pretexts for intracranial hemorrhage identification in head CT","name":"articletitle","label":"Article Title"},{"value":"Medical Image Analysis","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.media.2022.102489","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"102489"}}