{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T06:32:42Z","timestamp":1740119562776,"version":"3.37.3"},"reference-count":85,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,8,1]],"date-time":"2021-08-01T00:00:00Z","timestamp":1627776000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,8,1]],"date-time":"2021-08-01T00:00:00Z","timestamp":1627776000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2021,8,1]],"date-time":"2021-08-01T00:00:00Z","timestamp":1627776000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2021,8,1]],"date-time":"2021-08-01T00:00:00Z","timestamp":1627776000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2021,8,1]],"date-time":"2021-08-01T00:00:00Z","timestamp":1627776000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,8,1]],"date-time":"2021-08-01T00:00:00Z","timestamp":1627776000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001501","name":"University Grants Commission","doi-asserted-by":"publisher","award":["EMR\/2016\/006183"],"id":[{"id":"10.13039\/501100001501","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001409","name":"Department of Science and Technology, Ministry of Science and Technology, India","doi-asserted-by":"publisher","award":["EMR\/2016\/006183"],"id":[{"id":"10.13039\/501100001409","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Medical Image Analysis"],"published-print":{"date-parts":[[2021,8]]},"DOI":"10.1016\/j.media.2021.102099","type":"journal-article","created":{"date-parts":[[2021,5,13]],"date-time":"2021-05-13T02:33:04Z","timestamp":1620873184000},"page":"102099","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":28,"special_numbering":"C","title":["A CNN-based unified framework utilizing projection loss in unison with label noise handling for multiple Myeloma cancer diagnosis"],"prefix":"10.1016","volume":"72","author":[{"given":"Shiv","family":"Gehlot","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-7752-1926","authenticated-orcid":false,"given":"Anubha","family":"Gupta","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-5364-4086","authenticated-orcid":false,"given":"Ritu","family":"Gupta","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"3","key":"10.1016\/j.media.2021.102099_bib0001","doi-asserted-by":"crossref","first-page":"183","DOI":"10.4103\/2228-7477.186885","article-title":"Recognition of acute lymphoblastic leukemia cells in microscopic images using k-means clustering and support vector machine classifier","volume":"6","author":"Amin","year":"2016","journal-title":"J. Med. Signal. Sensor."},{"issue":"10","key":"10.1016\/j.media.2021.102099_bib0002","doi-asserted-by":"crossref","first-page":"908","DOI":"10.1002\/jemt.22718","article-title":"Computer aided detection and classification of acute lymphoblastic leukemia cell subtypes based on microscopic image analysis","volume":"79","author":"Amin","year":"2016","journal-title":"Microscopy Res. Tech."},{"key":"10.1016\/j.media.2021.102099_bib0003","series-title":"Computer Vision \u2013 ECCV 2016 Workshops","first-page":"532","article-title":"Transfer learning for cell nuclei classification in histopathology images","author":"Bayramoglu","year":"2016"},{"key":"10.1016\/j.media.2021.102099_bib0004","series-title":"2016 23rd International Conference on Pattern Recognition (ICPR)","first-page":"2440","article-title":"Deep learning for magnification independent breast cancer histopathology image classification","author":"Bayramoglu","year":"2016"},{"issue":"6","key":"10.1016\/j.media.2021.102099_bib0005","doi-asserted-by":"crossref","first-page":"394","DOI":"10.3322\/caac.21492","article-title":"Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries","volume":"68","author":"Bray","year":"2018","journal-title":"CA Cancer J. Clin."},{"issue":"2","key":"10.1016\/j.media.2021.102099_bib0006","doi-asserted-by":"crossref","first-page":"550","DOI":"10.1109\/TMI.2018.2867350","article-title":"From detection of individual metastases to classification of lymph node status at the patient level: The camelyon17 challenge","volume":"38","author":"Bndi","year":"2019","journal-title":"IEEE Trans. Med. Imag."},{"key":"10.1016\/j.media.2021.102099_bib0007","unstructured":"Cancer Tomorrow, 2020. Online; accessed 07 Oct 2020, https:\/\/gco.iarc.fr\/tomorrow\/graphic-isotype."},{"key":"10.1016\/j.media.2021.102099_bib0008","series-title":"2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)","first-page":"672","article-title":"Deep learning based Nucleus Classification in pancreas histological images","author":"Chang","year":"2017"},{"issue":"5","key":"10.1016\/j.media.2021.102099_bib0009","doi-asserted-by":"crossref","first-page":"79","DOI":"10.9790\/0661-16537987","article-title":"Analysis of blood samples for counting leukemia cells using support vector machine and nearest neighbour","volume":"16","author":"Chatap","year":"2014","journal-title":"IOSR J. Comput. Eng."},{"issue":"11","key":"10.1016\/j.media.2021.102099_bib0010","doi-asserted-by":"crossref","first-page":"e112980","DOI":"10.1371\/journal.pone.0112980","article-title":"Role of gist and phog features in computer-aided diagnosis of tuberculosis without segmentation","volume":"9","author":"Chauhan","year":"2014","journal-title":"PloS One"},{"issue":"7","key":"10.1016\/j.media.2021.102099_bib0011","doi-asserted-by":"crossref","first-page":"470","DOI":"10.1007\/s11684-020-0782-9","article-title":"Deep learning in digital pathology image analysis: a survey","volume":"14","author":"Deng","year":"2020","journal-title":"Front. Med."},{"key":"10.1016\/j.media.2021.102099_bib0012","series-title":"ISBI 2019 C-NMC Challenge: Classification in Cancer Cell Imaging","first-page":"33","article-title":"Deep learning for classifying of white blood cancer","author":"Ding","year":"2019"},{"key":"10.1016\/j.media.2021.102099_bib0013","series-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2017","first-page":"435","article-title":"SD-Layer: stain deconvolutional layer for cnns in medical microscopic imaging","author":"Duggal","year":"2017"},{"key":"10.1016\/j.media.2021.102099_bib0014","doi-asserted-by":"crossref","first-page":"115","DOI":"10.1038\/nature21056","article-title":"Dermatologist-level classification of skin cancer with deep neural networks","volume":"542","author":"Esteva","year":"2017","journal-title":"Nature"},{"issue":"2","key":"10.1016\/j.media.2021.102099_bib0015","doi-asserted-by":"crossref","first-page":"416","DOI":"10.1109\/JBHI.2016.2526603","article-title":"Hep-2 cell image classification with deep convolutional neural networks","volume":"21","author":"Gao","year":"2017","journal-title":"IEEE J. Biomed. Health Inf."},{"key":"10.1016\/j.media.2021.102099_bib0016","series-title":"ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","first-page":"1389","article-title":"EDNFC-Net: convolutional neural network with nested feature concatenation for nuclei-instance segmentation","author":"Gehlot","year":"2020"},{"key":"10.1016\/j.media.2021.102099_bib0017","doi-asserted-by":"crossref","first-page":"101661","DOI":"10.1016\/j.media.2020.101661","article-title":"SDCT-AuxNet\u03b8: DCT augmented stain deconvolutional CNN with auxiliary classifier for cancer diagnosis","volume":"61","author":"Gehlot","year":"2020","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.media.2021.102099_bib0019","doi-asserted-by":"crossref","first-page":"101788","DOI":"10.1016\/j.media.2020.101788","article-title":"GCTI-SN: geometry-inspired chemical and tissue invariant stain normalization of microscopic medical images","volume":"65","author":"Gupta","year":"2020","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.media.2021.102099_bib0020","article-title":"ALL challenge dataset of ISBI 2019 [Dataset]","author":"Gupta","year":"2019","journal-title":"The Cancer Imaging Archive"},{"year":"2019","series-title":"ISBI 2019 C-NMC challenge: classification in cancer cell imaging","author":"Gupta","key":"10.1016\/j.media.2021.102099_bib0021"},{"key":"10.1016\/j.media.2021.102099_bib0022","series-title":"Advances in Neural Information Processing Systems 31","first-page":"8527","article-title":"Co-teaching: robust training of deep neural networks with extremely noisy labels","author":"Han","year":"2018"},{"issue":"7","key":"10.1016\/j.media.2021.102099_bib0023","doi-asserted-by":"crossref","first-page":"1529","DOI":"10.1016\/j.jid.2018.01.028","article-title":"Classification of the clinical images for benign and malignant cutaneous tumors using a deep learning algorithm","volume":"138","author":"Han","year":"2018","journal-title":"J. Investigat. Dermatol."},{"key":"10.1016\/j.media.2021.102099_bib0024","series-title":"Deep Learning and Data Labeling for Medical Applications","first-page":"3","article-title":"HEp-2 cell classification using K-support spatial pooling in deep CNNs","author":"Han","year":"2016"},{"key":"10.1016\/j.media.2021.102099_bib0025","doi-asserted-by":"crossref","first-page":"25","DOI":"10.1016\/j.jbi.2018.08.006","article-title":"Skin lesion classification with ensembles of deep convolutional neural networks","volume":"86","author":"Harangi","year":"2018","journal-title":"J. Biomed. Inf."},{"key":"10.1016\/j.media.2021.102099_bib0026","series-title":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"770","article-title":"Deep residual learning for image recognition","author":"He","year":"2016"},{"key":"10.1016\/j.media.2021.102099_bib0027","doi-asserted-by":"crossref","first-page":"91","DOI":"10.1016\/j.ejca.2019.06.012","article-title":"Deep learning outperformed 11 pathologists in the classification of histopathological melanoma images","volume":"118","author":"Hekler","year":"2019","journal-title":"Eur. J. Cancer"},{"key":"10.1016\/j.media.2021.102099_bib0028","series-title":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"2261","article-title":"Densely connected convolutional networks","author":"Huang","year":"2017"},{"key":"10.1016\/j.media.2021.102099_bib0029","article-title":"Squeezenet: alexnet-level accuracy with 50x fewer parameters and <0.5mb model size","author":"Iandola","year":"2016","journal-title":"arXiv:1602.07360"},{"issue":"6","key":"10.1016\/j.media.2021.102099_bib0030","first-page":"475","article-title":"Two public chest x-ray datasets for computer-aided screening of pulmonary diseases","volume":"4","author":"Jaeger","year":"2014","journal-title":"Quant. Imag. Med. Surg."},{"key":"10.1016\/j.media.2021.102099_bib0031","series-title":"Proceedings of the 5th International Conference on Bioinformatics and Computational Biology","first-page":"59","article-title":"Breast mass lesion classification in mammograms by transfer learning","author":"Jiang","year":"2017"},{"issue":"3","key":"10.1016\/j.media.2021.102099_bib0032","first-page":"147","article-title":"White blood cells segmentation and classification to detect acute leukemia","volume":"2","author":"Joshi","year":"2013","journal-title":"Int. J. Emerg. Trend. Technol. Comput. Sci. (IJETTCS)"},{"key":"10.1016\/j.media.2021.102099_bib0033","doi-asserted-by":"crossref","first-page":"101759","DOI":"10.1016\/j.media.2020.101759","article-title":"Deep learning with noisy labels: exploring techniques and remedies in medical image analysis","volume":"65","author":"Karimi","year":"2020","journal-title":"Med. Image Anal."},{"issue":"1","key":"10.1016\/j.media.2021.102099_bib0034","article-title":"Micros-copic image segmentation using fuzzy c means for leukemia diagnosis","volume":"4","author":"Karthikeyan","year":"2017","journal-title":"Int. J. Adv. Res. Sci. Eng. Technol."},{"issue":"1","key":"10.1016\/j.media.2021.102099_bib0035","doi-asserted-by":"crossref","first-page":"49","DOI":"10.4103\/2228-7477.150428","article-title":"Automatic recognition of acute myelogenous leukemia in blood microscopic images using K-means clustering and support vector machine","volume":"5","author":"Kazemi","year":"2015","journal-title":"J. Med. Signal. Sensor."},{"key":"10.1016\/j.media.2021.102099_bib0036","series-title":"2018 IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"5447","article-title":"Cleannet: transfer learning for scalable image classifier training with label noise","author":"Lee","year":"2018"},{"key":"10.1016\/j.media.2021.102099_bib0037","doi-asserted-by":"crossref","first-page":"60","DOI":"10.1016\/j.media.2017.07.005","article-title":"A survey on deep learning in medical image analysis","volume":"42","author":"Litjens","year":"2017","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.media.2021.102099_bib0038","series-title":"ISBI 2019 C-NMC Challenge: Classification in Cancer Cell Imaging","first-page":"113","article-title":"Acute lymphoblastic leukemia cells image analysis with deep bagging ensemble learning","author":"Liu","year":"2019"},{"key":"10.1016\/j.media.2021.102099_bib0039","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","article-title":"Rethinking computer-aided tuberculosis diagnosis","author":"Liu","year":"2020"},{"key":"10.1016\/j.media.2021.102099_bib0040","series-title":"Computer Vision \u2013 ECCV 2018","first-page":"122","article-title":"Shufflenet v2: practical guidelines for efficient cnn architecture design","author":"Ma","year":"2018"},{"key":"10.1016\/j.media.2021.102099_bib0041","series-title":"Proc. SPIE 8295, Image Processing: Algorithms and Systems X; and Parallel Processing for Imaging Applications II, 829518","article-title":"New decision support tool for acute lymphoblastic leukemia classification","author":"Madhukar","year":"2012"},{"key":"10.1016\/j.media.2021.102099_bib0042","doi-asserted-by":"crossref","first-page":"69","DOI":"10.1016\/j.cmpb.2018.08.006","article-title":"Transfer learning for classification of cardiovascular tissues in histological images","volume":"165","author":"Mazo","year":"2018","journal-title":"Comput. Method. Program. Biomed."},{"issue":"5","key":"10.1016\/j.media.2021.102099_bib0043","doi-asserted-by":"crossref","first-page":"2091","DOI":"10.1109\/JBHI.2018.2878878","article-title":"Large-scale multi-class image-based cell classification with deep learning","volume":"23","author":"Meng","year":"2019","journal-title":"IEEE J. Biomed. Health Inf."},{"key":"10.1016\/j.media.2021.102099_bib0044","doi-asserted-by":"crossref","first-page":"303","DOI":"10.1016\/j.bspc.2018.08.012","article-title":"Texture feature based classification on microscopic blood smear for acute lymphoblastic leukemia detection","volume":"47","author":"Mishra","year":"2019","journal-title":"Biomed. Signal Process. Control"},{"key":"10.1016\/j.media.2021.102099_bib0045","doi-asserted-by":"crossref","first-page":"272","DOI":"10.1016\/j.bspc.2016.11.021","article-title":"Gray level co-occurrence matrix and random forest based acute lymphoblastic leukemia detection","volume":"33","author":"Mishra","year":"2017","journal-title":"Biomed. Signal Process. Control"},{"issue":"7","key":"10.1016\/j.media.2021.102099_bib0046","doi-asserted-by":"crossref","first-page":"1887","DOI":"10.1007\/s00521-013-1438-3","article-title":"An ensemble classifier system for early diagnosis of acute lymphoblastic leukemia in blood microscopic images","volume":"24","author":"Mohapatra","year":"2014","journal-title":"Neural Comput. Appl."},{"key":"10.1016\/j.media.2021.102099_bib0047","series-title":"2011 International Conference on Devices and Communications (ICDeCom)","first-page":"1","article-title":"Fuzzy based blood image segmentation for automated leukemia detection","author":"Mohapatra","year":"2011"},{"key":"10.1016\/j.media.2021.102099_bib0018","unstructured":"Goswami, S., Mehta, S., Sahrawat, D., Gupta, A., Gupta, R., 2020. Heterogeneity loss to handle intersubject and intrasubject variability in cancer. arXiv preprint arXiv:2003.03295."},{"key":"10.1016\/j.media.2021.102099_bib0048","unstructured":"Multiple Myeloma, 2020. https:\/\/www.cancer.org\/Online; accessed 07 Oct 2020."},{"key":"10.1016\/j.media.2021.102099_bib0049","first-page":"1","article-title":"An intelligent decision support system for leukaemia diagnosis using microscopic blood images","volume":"5","author":"Neoh","year":"2015","journal-title":"Sci. Rep."},{"key":"10.1016\/j.media.2021.102099_bib0050","series-title":"ISBI 2019 C-NMC Challenge: Classification in Cancer Cell Imaging","first-page":"73","article-title":"Neighborhood-correction algorithm for classification of normal and malignant cells","author":"Pan","year":"2019"},{"key":"10.1016\/j.media.2021.102099_bib0051","doi-asserted-by":"crossref","first-page":"635","DOI":"10.1016\/j.procs.2015.08.082","article-title":"Automated leukaemia detection using microscopic images","volume":"58","author":"Patel","year":"2015","journal-title":"Procedia Comput. Sci."},{"key":"10.1016\/j.media.2021.102099_bib0052","series-title":"2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI)","first-page":"1208","article-title":"Transfer learning of a convolutional neural network for HEp-2 cell image classification","author":"Phan","year":"2016"},{"key":"10.1016\/j.media.2021.102099_bib0053","series-title":"ISBI 2019 C-NMC Challenge: Classification in Cancer Cell Imaging","first-page":"53","article-title":"Acute lymphoblastic leukemia classification from microscopic images using convolutional neural networks","author":"Prellberg","year":"2019"},{"issue":"3","key":"10.1016\/j.media.2021.102099_bib0054","doi-asserted-by":"crossref","first-page":"179","DOI":"10.1016\/j.artmed.2014.09.002","article-title":"Leukocyte classification for leukaemia detection using image processing techniques","volume":"62","author":"Putzu","year":"2014","journal-title":"Artific. Intell. Med."},{"key":"10.1016\/j.media.2021.102099_bib0055","doi-asserted-by":"crossref","first-page":"243","DOI":"10.1016\/j.cmpb.2018.05.024","article-title":"Fine-grained leukocyte classification with deep residual learning for microscopic images","volume":"162","author":"Qin","year":"2018","journal-title":"Comput. Method. Program. Biomed."},{"issue":"18","key":"10.1016\/j.media.2021.102099_bib0056","doi-asserted-by":"crossref","first-page":"19057","DOI":"10.1007\/s11042-017-4478-3","article-title":"Classification of acute lymphoblastic leukaemia using hybrid hierarchical classifiers","volume":"76","author":"Rawat","year":"2017","journal-title":"Multimedia Tool. Appl."},{"issue":"4","key":"10.1016\/j.media.2021.102099_bib0057","doi-asserted-by":"crossref","first-page":"637","DOI":"10.1016\/j.bbe.2017.07.003","article-title":"Computer assisted classification framework for prediction of acute lymphoblastic and acute myeloblastic leukemia","volume":"37","author":"Rawat","year":"2017","journal-title":"Biocybernetic. Biomed. Eng."},{"issue":"11","key":"10.1016\/j.media.2021.102099_bib0058","doi-asserted-by":"crossref","first-page":"1310","DOI":"10.1002\/jemt.23139","article-title":"Classification of acute lymphoblastic leukemia using deep learning","volume":"81","author":"Rehman","year":"2018","journal-title":"Microscopy Res. Tech."},{"key":"10.1016\/j.media.2021.102099_bib0059","first-page":"1","article-title":"Segmentation and classification of bone marrow cells images using contextual information for medical diagnosis of acute leukemias","volume":"10","author":"Reta","year":"2015","journal-title":"PLOS ONE"},{"key":"10.1016\/j.media.2021.102099_bib0060","series-title":"2018 IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"4510","article-title":"Mobilenetv2: inverted residuals and linear bottlenecks","author":"Sandler","year":"2018"},{"key":"10.1016\/j.media.2021.102099_bib0061","doi-asserted-by":"crossref","DOI":"10.1177\/1533033818802789","article-title":"Acute lymphoblastic leukemia detection and classification of its subtypes using pretrained deep convolutional neural networks","volume":"17","author":"Shafique","year":"2018","journal-title":"Technol. Cancer Res. Treat."},{"key":"10.1016\/j.media.2021.102099_bib0062","series-title":"ISBI 2019 C-NMC Challenge: Classification in Cancer Cell Imaging","first-page":"23","article-title":"Classification of normal and leukemic blast cells in b-all cancer using a combination of convolutional and recurrent neural networks","author":"Shah","year":"2019"},{"issue":"5","key":"10.1016\/j.media.2021.102099_bib0063","first-page":"1","article-title":"Cancer Control in Low- and Middle-Income Countries: Is It Time to Consider Screening?","author":"Shah","year":"2019","journal-title":"J. Glob. Oncol."},{"key":"10.1016\/j.media.2021.102099_sbref0064","doi-asserted-by":"crossref","first-page":"2","DOI":"10.1016\/j.compmedimag.2017.06.001","article-title":"Deep convolutional neural networks for automatic classification of gastric carcinoma using whole slide images in digital histopathology","volume":"61","author":"Sharma","year":"2017","journal-title":"Computer. Med. Imag. Graphic."},{"key":"10.1016\/j.media.2021.102099_bib0065","series-title":"ISBI 2019 C-NMC Challenge: Classification in Cancer Cell Imaging","first-page":"43","article-title":"Ensemble convolutional neural networks for cell classification in microscopic images","author":"Shi","year":"2019"},{"key":"10.1016\/j.media.2021.102099_bib0066","series-title":"Proceedings of International Conference on ICT for Sustainable Development","first-page":"535","article-title":"Texture features for the detection of acute lymphoblastic leukemia","author":"Singhal","year":"2016"},{"issue":"5","key":"10.1016\/j.media.2021.102099_bib0067","doi-asserted-by":"crossref","first-page":"1196","DOI":"10.1109\/TMI.2016.2525803","article-title":"Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images","volume":"35","author":"Sirinukunwattana","year":"2016","journal-title":"IEEE Trans. Med. Imag."},{"key":"10.1016\/j.media.2021.102099_bib0068","series-title":"ICLR (workshop track)","article-title":"Striving for simplicity: the all convolutional net","author":"Springenberg","year":"2015"},{"key":"10.1016\/j.media.2021.102099_bib0069","series-title":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"2818","article-title":"Rethinking the inception architecture for computer vision","author":"Szegedy","year":"2016"},{"key":"10.1016\/j.media.2021.102099_bib0070","series-title":"2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"1","article-title":"Going deeper with convolutions","author":"Szegedy","year":"2015"},{"key":"10.1016\/j.media.2021.102099_bib0071","doi-asserted-by":"crossref","first-page":"10509","DOI":"10.1038\/s41598-019-46718-3","article-title":"Pan-Renal Cell Carcinoma classification and survival prediction from histopathology images using deep learning","volume":"9","author":"Tabibu","year":"2019","journal-title":"Sci. Rep."},{"key":"10.1016\/j.media.2021.102099_bib0072","unstructured":"TBX11K Tuberculosis Classification and Detection Challenge, 2020. https:\/\/competitions.codalab.org\/competitions\/25848,Online; accessed 02 Feb 2020."},{"key":"10.1016\/j.media.2021.102099_bib0073","unstructured":"The Global Cancer Observatory, 2020. https:\/\/gco.iarc.fr\/.Online; accessed 07 Oct 2020."},{"key":"10.1016\/j.media.2021.102099_bib0074","series-title":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"6575","article-title":"Learning from noisy large-scale datasets with minimal supervision","author":"Veit","year":"2017"},{"key":"10.1016\/j.media.2021.102099_bib0075","series-title":"ISBI 2019 C-NMC Challenge: Classification in Cancer Cell Imaging","first-page":"131","article-title":"ISBI challenge 2019: convolution neural networks for b-all cell classification","author":"Verma","year":"2019"},{"key":"10.1016\/j.media.2021.102099_bib0076","series-title":"2015 21st Korea-Japan Joint Workshop on Frontiers of Computer Vision (FCV)","first-page":"1","article-title":"Acute lymphoid leukemia classification using two-step neural network classifier","author":"Vincent","year":"2015"},{"key":"10.1016\/j.media.2021.102099_bib0077","doi-asserted-by":"crossref","first-page":"415","DOI":"10.1016\/j.engappai.2018.04.024","article-title":"Leukemia diagnosis in blood slides using transfer learning in cnns and svm for classification","volume":"72","author":"Vogado","year":"2018","journal-title":"Eng. Appl. Artif. Intell."},{"key":"10.1016\/j.media.2021.102099_bib0078","series-title":"2017 30th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI)","first-page":"367","article-title":"Diagnosing leukemia in blood smear images using an ensemble of classifiers and pre-trained convolutional neural networks","author":"Vogado","year":"2017"},{"key":"10.1016\/j.media.2021.102099_bib0079","doi-asserted-by":"crossref","first-page":"105","DOI":"10.1016\/j.media.2018.07.010","article-title":"Building medical image classifiers with very limited data using segmentation networks","volume":"49","author":"Wong","year":"2018","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.media.2021.102099_bib0080","series-title":"ISBI 2019 C-NMC Challenge: Classification in Cancer Cell Imaging","first-page":"83","article-title":"DeepMEN: Multi-model ensemble network for b-lymphoblast cell classification","author":"Xiao","year":"2019"},{"key":"10.1016\/j.media.2021.102099_bib0081","series-title":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"5987","article-title":"Aggregated residual transformations for deep neural networks","author":"Xie","year":"2017"},{"key":"10.1016\/j.media.2021.102099_bib0082","series-title":"ISBI 2019 C-NMC Challenge: Classification in Cancer Cell Imaging","first-page":"95","article-title":"Multi-streams and multi-features for cell classification","author":"Xie","year":"2019"},{"key":"10.1016\/j.media.2021.102099_bib0083","series-title":"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","first-page":"947","article-title":"Deep convolutional activation features for large scale brain tumor histopathology image classification and segmentation","author":"Xu","year":"2015"},{"key":"10.1016\/j.media.2021.102099_bib0084","series-title":"2018 IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"3474","article-title":"Robust classification with convolutional prototype learning","author":"Yang","year":"2018"},{"issue":"6","key":"10.1016\/j.media.2021.102099_bib0085","doi-asserted-by":"crossref","first-page":"1633","DOI":"10.1109\/JBHI.2017.2705583","article-title":"DeepPap: deep convolutional networks for cervical cell classification","volume":"21","author":"Zhang","year":"2017","journal-title":"IEEE J. Biomed. Health Inf."}],"container-title":["Medical Image Analysis"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1361841521001456?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1361841521001456?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,3,29]],"date-time":"2023-03-29T22:51:05Z","timestamp":1680130265000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1361841521001456"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,8]]},"references-count":85,"alternative-id":["S1361841521001456"],"URL":"https:\/\/doi.org\/10.1016\/j.media.2021.102099","relation":{},"ISSN":["1361-8415"],"issn-type":[{"type":"print","value":"1361-8415"}],"subject":[],"published":{"date-parts":[[2021,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A CNN-based unified framework utilizing projection loss in unison with label noise handling for multiple Myeloma cancer diagnosis","name":"articletitle","label":"Article Title"},{"value":"Medical Image Analysis","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.media.2021.102099","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"102099"}}