{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,6]],"date-time":"2024-10-06T01:07:30Z","timestamp":1728176850097},"reference-count":75,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,7,1]],"date-time":"2021-07-01T00:00:00Z","timestamp":1625097600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,7,1]],"date-time":"2021-07-01T00:00:00Z","timestamp":1625097600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2021,7,1]],"date-time":"2021-07-01T00:00:00Z","timestamp":1625097600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2021,7,1]],"date-time":"2021-07-01T00:00:00Z","timestamp":1625097600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2021,7,1]],"date-time":"2021-07-01T00:00:00Z","timestamp":1625097600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,7,1]],"date-time":"2021-07-01T00:00:00Z","timestamp":1625097600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100007343","name":"University of Brescia","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100007343","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Medical Image Analysis"],"published-print":{"date-parts":[[2021,7]]},"DOI":"10.1016\/j.media.2021.102046","type":"journal-article","created":{"date-parts":[[2021,3,31]],"date-time":"2021-03-31T17:32:28Z","timestamp":1617211948000},"page":"102046","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":97,"special_numbering":"C","title":["BS-Net: Learning COVID-19 pneumonia severity on a large chest X-ray dataset"],"prefix":"10.1016","volume":"71","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-8383-3766","authenticated-orcid":false,"given":"Alberto","family":"Signoroni","sequence":"first","affiliation":[]},{"given":"Mattia","family":"Savardi","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2152-9424","authenticated-orcid":false,"given":"Sergio","family":"Benini","sequence":"additional","affiliation":[]},{"given":"Nicola","family":"Adami","sequence":"additional","affiliation":[]},{"given":"Riccardo","family":"Leonardi","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0159-5846","authenticated-orcid":false,"given":"Paolo","family":"Gibellini","sequence":"additional","affiliation":[]},{"given":"Filippo","family":"Vaccher","sequence":"additional","affiliation":[]},{"given":"Marco","family":"Ravanelli","sequence":"additional","affiliation":[]},{"given":"Andrea","family":"Borghesi","sequence":"additional","affiliation":[]},{"given":"Roberto","family":"Maroldi","sequence":"additional","affiliation":[]},{"given":"Davide","family":"Farina","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"1","key":"10.1016\/j.media.2021.102046_bib0002","doi-asserted-by":"crossref","first-page":"20","DOI":"10.5152\/dir.2020.20205","article-title":"Determination of disease severity in COVID-19 patients using deep learning in chest X-ray images","volume":"27","author":"Blain","year":"2021","journal-title":"Diagn. Interv. Radiol."},{"key":"10.1016\/j.media.2021.102046_bib0003","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2020.101688","article-title":"CEREBRUM: a fast and fully-volumetric convolutional Encoder-decodeR for weakly-supervised sEgmentation of BRain strUctures from out-of-the-scanner MRI","volume":"62","author":"Bontempi","year":"2020","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.media.2021.102046_bib0004","doi-asserted-by":"crossref","first-page":"509","DOI":"10.1007\/s11547-020-01200-3","article-title":"COVID-19 outbreak in Italy: experimental chest X-ray scoring system for quantifying and monitoring disease progression","volume":"125","author":"Borghesi","year":"2020","journal-title":"Radiol. Med."},{"key":"10.1016\/j.media.2021.102046_bib0005","doi-asserted-by":"crossref","first-page":"291","DOI":"10.1016\/j.ijid.2020.05.021","article-title":"Chest X-ray severity index as a predictor of in-hospital mortality in coronavirus disease 2019: a study of 302 patients from Italy","volume":"96","author":"Borghesi","year":"2020","journal-title":"Int. J. Infect. Dis."},{"key":"10.1016\/j.media.2021.102046_bib0001","doi-asserted-by":"crossref","unstructured":"Amer, R., Frid-Adar, M., Gozes, O., Nassar, J., Greenspan, H., 2020. COVID-19 in CXR: from detection and severity scoring to patient disease monitoring. arXiv:2008.02150 doi: 10.1109\/JBHI.2021.3069169.","DOI":"10.1109\/JBHI.2021.3069169"},{"key":"10.1016\/j.media.2021.102046_bib0007","doi-asserted-by":"crossref","unstructured":"Burlacu, A., Crisan-Dabija, R., Popa, I. V., Artene, B., Birzu, V., Pricop, M., Plesoianu, C., Generali, D., 2020. Curbing the AI-induced enthusiasm in diagnosing COVID-19 on chest X-rays: the present and the near-future. medRxiv.","DOI":"10.1101\/2020.04.28.20082776"},{"key":"10.1016\/j.media.2021.102046_bib0006","doi-asserted-by":"crossref","first-page":"461","DOI":"10.1007\/s11547-020-01202-1","article-title":"Radiographic severity index in COVID-19 pneumonia: relationship to age and sex in 783 Italian patients","volume":"125","author":"Borghesi","year":"2020","journal-title":"Radiol. Med."},{"issue":"2","key":"10.1016\/j.media.2021.102046_bib0008","doi-asserted-by":"crossref","DOI":"10.3390\/info11020125","article-title":"Albumentations: fast and flexible image augmentations","volume":"11","author":"Buslaev","year":"2020","journal-title":"Information"},{"issue":"4","key":"10.1016\/j.media.2021.102046_bib0009","doi-asserted-by":"crossref","first-page":"563","DOI":"10.1007\/s11548-019-01917-1","article-title":"A review on lung boundary detection in chest X-rays","volume":"14","author":"Candemir","year":"2019","journal-title":"Int. J. Comput. Assist. Radiol. Surg."},{"issue":"2","key":"10.1016\/j.media.2021.102046_bib0010","doi-asserted-by":"crossref","first-page":"577","DOI":"10.1109\/TMI.2013.2290491","article-title":"Lung segmentation in chest radiographs using anatomical atlases with nonrigid registration","volume":"33","author":"Candemir","year":"2014","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.media.2021.102046_bib0011","doi-asserted-by":"crossref","unstructured":"Castiglioni, I., Ippolito, D., Interlenghi, M., Monti, C. B., Salvatore, C., Schiaffino, S., Polidori, A., Gandola, D., Messa, C., Sardanelli, F., 2020. Artificial intelligence applied on chest X-ray can aid in the diagnosis of COVID-19 infection: a first experience from lombardy, Italy. medRxiv.","DOI":"10.1101\/2020.04.08.20040907"},{"key":"10.1016\/j.media.2021.102046_bib0012","doi-asserted-by":"crossref","unstructured":"Cohen, J. P., Dao, L., Morrison, P., Roth, K., Bengio, Y., Shen, B., Abbasi, A., Hoshmand-Kochi, M., Ghassemi, M., Li, H., Duong, T. Q., 2020a. Predicting COVID-19 pneumonia severity on chest X-ray with deep learning. arXiv:2005.11856.","DOI":"10.7759\/cureus.9448"},{"key":"10.1016\/j.media.2021.102046_bib0014","first-page":"1","article-title":"COVID-19 image data collection: prospective predictions are the future","volume":"2","author":"Cohen","year":"2020","journal-title":"J. Mach. Learn. Biomed. Imaging"},{"issue":"1","key":"10.1016\/j.media.2021.102046_bib0065","doi-asserted-by":"crossref","first-page":"E197","DOI":"10.1148\/radiol.2020201754","article-title":"Clinical and chest radiography features determine patient outcomes in young and middle age adults with COVID-19","volume":"297","author":"Toussie","year":"2020","journal-title":"Radiology"},{"issue":"1","key":"10.1016\/j.media.2021.102046_bib0016","doi-asserted-by":"crossref","first-page":"19","DOI":"10.1016\/j.media.2005.02.002","article-title":"Segmentation of anatomical structures in chest radiographs using supervised methods: a comparative study on a public database","volume":"10","author":"van Ginneken","year":"2006","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.media.2021.102046_bib0013","unstructured":"Cohen, J. P., Morrison, P., Dao, L., 2020b. COVID-19 image data collection. arXiv:2003.11597, https:\/\/github.com\/ieee8023\/covid-chestxray-dataset."},{"key":"10.1016\/j.media.2021.102046_bib0017","unstructured":"Glasmachers, T., 2017. Limits of End-to-End Learning. arXiv:1704.08305."},{"key":"10.1016\/j.media.2021.102046_bib0018","unstructured":"Gozes, O., Frid-Adar, M., Greenspan, H., Browning, P. D., Zhang, H., Ji, W., Bernheim, A., Siegel, E., 2020. Rapid ai development cycle for the coronavirus (COVID-19) pandemic: initial results for automated detection and patient monitoring using deep learning CT image analysis. arXiv:2003.05037."},{"key":"10.1016\/j.media.2021.102046_bib0015","series-title":"Image Analysis for Moving Organ, Breast, and Thoracic Images","first-page":"159","article-title":"Improving the segmentation of anatomical structures in chest radiographs using U-net with an imagenet pre-trained encoder","author":"Frid-Adar","year":"2018"},{"key":"10.1016\/j.media.2021.102046_bib0019","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"770","article-title":"Deep residual learning for image recognition","author":"He","year":"2016"},{"key":"10.1016\/j.media.2021.102046_bib0020","unstructured":"Hryniewska, W., Bombi\u00c5ski, P., Szatkowski, P., Tomaszewska, P., Przelaskowski, A., Biecek, P., 2020. Do not repeat these mistakes \u2013 a critical appraisal of applications of explainable artificial intelligence for image based COVID-19 detection. arXiv:2012.08333."},{"issue":"2","key":"10.1016\/j.media.2021.102046_bib0022","first-page":"e200075","article-title":"Serial quantitative chest CT assessment of COVID-19: deep-learning approach","volume":"2","author":"Huang","year":"2020","journal-title":"Radiol.: Cardiothorac. Imag."},{"key":"10.1016\/j.media.2021.102046_bib0021","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"4700","article-title":"Densely connected convolutional networks","author":"Huang","year":"2017"},{"key":"10.1016\/j.media.2021.102046_bib0023","series-title":"Proceedings of the AAAI Conf. on Artificial Intelligence","first-page":"590","article-title":"Chexpert: a large chest radiograph dataset with uncertainty labels and expert comparison","volume":"33","author":"Irvin","year":"2019"},{"key":"10.1016\/j.media.2021.102046_bib0024","series-title":"Advances in Neural Information Processing Systems","first-page":"2017","article-title":"Spatial transformer networks","volume":"28","author":"Jaderberg","year":"2015"},{"issue":"6","key":"10.1016\/j.media.2021.102046_bib0025","first-page":"475","article-title":"Two public chest X-ray datasets for computer-aided screening of pulmonary diseases","volume":"4","author":"Jaeger","year":"2014","journal-title":"Quant. Imaging Med. Surg."},{"key":"10.1016\/j.media.2021.102046_bib0026","unstructured":"Kalkreuth, R., Kaufmann, P., 2020. COVID-19: a survey on public medical imaging data resources. arXiv:2004.04569."},{"key":"10.1016\/j.media.2021.102046_bib0027","doi-asserted-by":"crossref","unstructured":"Karim, M. R., Dhmen, T., Rebholz-Schuhmann, D., Decker, S., Cochez, M., Beyan, O., 2020. DeepCOVIDExplainer: explainable COVID-19 predictions based on chest X-ray images. arXiv:2004.04582.","DOI":"10.1109\/BIBM49941.2020.9313304"},{"key":"10.1016\/j.media.2021.102046_bib0028","doi-asserted-by":"crossref","unstructured":"Karimi, D., Dou, H., Warfield, S. K., Gholipour, A., 2019. Deep learning with noisy labels: exploring techniques and remedies in medical image analysis. arXiv:1912.02911.","DOI":"10.1016\/j.media.2020.101759"},{"key":"10.1016\/j.media.2021.102046_bib0029","unstructured":"Kingma, D. P., Ba, J., 2014. Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980."},{"issue":"3","key":"10.1016\/j.media.2021.102046_bib0030","first-page":"e200053","article-title":"How might ai and chest imaging help unravel COVID-19\u2019 mysteries?","volume":"2","author":"Kundu","year":"2020","journal-title":"Radiol.: Artif. Intell."},{"issue":"5","key":"10.1016\/j.media.2021.102046_bib0031","doi-asserted-by":"crossref","first-page":"e225","DOI":"10.1016\/S2589-7500(20)30079-0","article-title":"Cautions about radiologic diagnosis of COVID-19 infection driven by artificial intelligence","volume":"2","author":"Laghi","year":"2020","journal-title":"Lancet Digit. Health"},{"issue":"1","key":"10.1016\/j.media.2021.102046_bib0032","doi-asserted-by":"crossref","first-page":"85","DOI":"10.1109\/TAI.2020.3020521","article-title":"Leveraging data science to combat COVID-19: a comprehensive review","volume":"1","author":"Latif","year":"2020","journal-title":"IEEE Trans. Artif. Intell."},{"issue":"1","key":"10.1016\/j.media.2021.102046_sbref0033","doi-asserted-by":"crossref","first-page":"E18","DOI":"10.1148\/radiol.2020202439","article-title":"Automated assessment of CO-RADS and chest CT severity scores in patients with suspected COVID-19 using artificial intelligence","volume":"298","author":"Lessmann","year":"2021","journal-title":"Radiology"},{"key":"10.1016\/j.media.2021.102046_bib0034","doi-asserted-by":"crossref","unstructured":"Li, M. D., Arun, N. T., Aggarwal, M., Gupta, S., Singh, P., Little, B. P., Mendoza, D. P., Corradi, G. C. A., Takahashi, M. S., Ferraciolli, S. F., Succi, M. D., Lang, M., Bizzo, B. C., Dayan, I., Kitamura, F. C., Kalpathy-Cramer, J., 2020a. Improvement and multi-population generalizability of a deep learning-based chest radiograph severity score for COVID-19. medRxiv. 10.1101\/2020.09.15.20195453.","DOI":"10.1101\/2020.09.15.20195453"},{"issue":"4","key":"10.1016\/j.media.2021.102046_bib0035","first-page":"e200079","article-title":"Automated assessment and tracking of COVID-19 pulmonary disease severity on chest radiographs using convolutional siamese neural networks","volume":"2","author":"Li","year":"2020","journal-title":"Radiology"},{"key":"10.1016\/j.media.2021.102046_bib0036","doi-asserted-by":"crossref","unstructured":"Li, X., Li, C., Zhu, D., 2020c. COVID-MobileXpert: On-device COVID-19 screening using snapshots of chest X-ray. arXiv:2004.03042.","DOI":"10.1109\/BIBM49941.2020.9313217"},{"key":"10.1016\/j.media.2021.102046_bib0038","doi-asserted-by":"crossref","unstructured":"Linda Wang, Z. Q. L., Wong, A., 2020. COVID-Net: A tailored deep convolutional neural network design for detection of COVID-19 cases from chest radiography images. arXiv:2003.09871.","DOI":"10.1038\/s41598-020-76550-z"},{"key":"10.1016\/j.media.2021.102046_bib0037","series-title":"The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"936","article-title":"Feature Pyramid Networks for Object Detection","author":"Lin","year":"2017"},{"key":"10.1016\/j.media.2021.102046_bib0039","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"3431","article-title":"Fully convolutional networks for semantic segmentation","author":"Long","year":"2015"},{"key":"10.1016\/j.media.2021.102046_bib0040","doi-asserted-by":"crossref","unstructured":"Maguolo, G., Nanni, L., 2020. A Critic Evaluation of Methods for COVID-19 Automatic Detection from X-Ray Images. arXiv:2004.12823.","DOI":"10.1016\/j.inffus.2021.04.008"},{"issue":"3","key":"10.1016\/j.media.2021.102046_bib0041","first-page":"e200210","article-title":"COVID-19: a multimodality review of radiologic techniques, clinical utility, and imaging features","volume":"2","author":"Manna","year":"2020","journal-title":"Radiol.: Cardiothorac. Imag."},{"key":"10.1016\/j.media.2021.102046_bib0042","first-page":"1","article-title":"Which role for chest X-ray score in predicting the outcome in COVID-19 pneumonia?","author":"Maroldi","year":"2020","journal-title":"Eur. Radiol."},{"key":"10.1016\/j.media.2021.102046_bib0043","doi-asserted-by":"crossref","first-page":"101794","DOI":"10.1016\/j.media.2020.101794","article-title":"Deep-COVID: predicting COVID-19 from chest X-rayimages using deep transfer learning","volume":"65","author":"Minaee","year":"2020","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.media.2021.102046_bib0044","doi-asserted-by":"crossref","first-page":"101794","DOI":"10.1016\/j.media.2020.101794","article-title":"Deep-COVID: predicting COVID-19 from chest X-ray images using deep transfer learning","volume":"65","author":"Minaee","year":"2020","journal-title":"Med. Image Anal."},{"issue":"8","key":"10.1016\/j.media.2021.102046_bib0045","doi-asserted-by":"crossref","first-page":"2688","DOI":"10.1109\/TMI.2020.2993291","article-title":"Deep learning COVID-19 features on CXR using limited training data sets","volume":"39","author":"Oh","year":"2020","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.media.2021.102046_bib0047","doi-asserted-by":"crossref","unstructured":"Rajaraman, S., Siegelman, J., Alderson, P. O., Folio, L. S., Folio, L. R., Antani, S. K., 2020. Iteratively pruned deep learning ensembles for COVID-19 detection in chest X-rays. arXiv:2004.08379.","DOI":"10.1109\/ACCESS.2020.3003810"},{"key":"10.1016\/j.media.2021.102046_bib0048","unstructured":"Ramachandran, P., Zoph, B., Le, Q. V., 2017. Searching for activation functions. arXiv preprint arXiv:1710.05941."},{"key":"10.1016\/j.media.2021.102046_bib0046","doi-asserted-by":"crossref","first-page":"105532","DOI":"10.1016\/j.cmpb.2020.105532","article-title":"COVID-19 identification in chest X-ray images on flat and hierarchical classification scenarios","volume":"194","author":"Pereira","year":"2020","journal-title":"Comput. Methods Prog. Biomed."},{"issue":"3","key":"10.1016\/j.media.2021.102046_bib0049","first-page":"e190043","article-title":"On the interpretability of artificial intelligence in radiology: challenges and opportunities","volume":"2","author":"Reyes","year":"2020","journal-title":"Radiol.: Artif. Intell."},{"key":"10.1016\/j.media.2021.102046_bib0050","series-title":"Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","first-page":"11351144","article-title":"why should i trust you?: explaining the predictions of any classifier","author":"Ribeiro","year":"2016"},{"key":"10.1016\/j.media.2021.102046_bib0051","series-title":"International Conference on Medical image Computing and Computer-Assisted Intervention","first-page":"234","article-title":"U-net: convolutional networks for biomedical image segmentation","author":"Ronneberger","year":"2015"},{"issue":"1","key":"10.1016\/j.media.2021.102046_bib0052","first-page":"172","article-title":"The role of chest imaging in patient management during the COVID-19 pandemic: a multinational consensus statement from the Fleischner society","volume":"296","author":"Rubin","year":"2020","journal-title":"Radiology (Simultaneously Published inChest)"},{"issue":"3","key":"10.1016\/j.media.2021.102046_bib0053","doi-asserted-by":"crossref","first-page":"E193","DOI":"10.1148\/radiol.2020201845","article-title":"Assessing the value of diagnostic tests in the new world of COVID-19 pandemic","volume":"296","author":"Sardanelli","year":"2020","journal-title":"Radiology"},{"key":"10.1016\/j.media.2021.102046_bib0054","series-title":"The IEEE International Conference on Computer Vision (ICCV)","first-page":"618","article-title":"Grad-CAM: visual explanations from deep networks via gradient-based localization","author":"Selvaraju","year":"2017"},{"key":"10.1016\/j.media.2021.102046_bib0055","doi-asserted-by":"crossref","first-page":"4","DOI":"10.1109\/RBME.2020.2987975","article-title":"Review of artificial intelligence techniques in imaging data acquisition, segmentation and diagnosis for COVID-19","volume":"14","author":"Shi","year":"2021","journal-title":"IEEE Rev. Biomed. Eng."},{"issue":"1","key":"10.1016\/j.media.2021.102046_bib0056","doi-asserted-by":"crossref","first-page":"71","DOI":"10.2214\/ajr.174.1.1740071","article-title":"Development of a digital image database for chest radiographs with and without a lung nodule: receiver operating characteristic analysis of radiologists\u2019 detection of pulmonary nodules","volume":"174","author":"Shiraishi","year":"2000","journal-title":"Am. J. Roentgenol."},{"key":"10.1016\/j.media.2021.102046_bib0057","unstructured":"Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556."},{"key":"10.1016\/j.media.2021.102046_bib0058","series-title":"2018 IEEE 38th International Conference on Electronics and Nanotechnology (ELNANO)","first-page":"422","article-title":"Chest X-ray analysis of tuberculosis by deep learning with segmentation and augmentation","author":"Stirenko","year":"2018"},{"issue":"3","key":"10.1016\/j.media.2021.102046_sbref0059","first-page":"E162","article-title":"Artificial intelligence of COVID-19 imaging: ahammer in search of a nail","volume":"298","author":"Summers","year":"2021","journal-title":"Radiology (Published Online)"},{"key":"10.1016\/j.media.2021.102046_bib0060","series-title":"Thirty-First AAAI Conference on artificial Intelligence","first-page":"4278","article-title":"Inception-v4, inception-resnet and the impact of residual connections on learning","author":"Szegedy","year":"2017"},{"key":"10.1016\/j.media.2021.102046_bib0061","doi-asserted-by":"crossref","first-page":"101693","DOI":"10.1016\/j.media.2020.101693","article-title":"Embracing imperfect datasets: A review of deep learning solutions for medical image segmentation","volume":"63","author":"Tajbakhsh","year":"2020","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.media.2021.102046_bib0062","doi-asserted-by":"crossref","unstructured":"Tan, M., Pang, R., Le, Q. V., 2019. EfficientDet: Scalable and Efficient Object Detection. arXiv:1911.09070.","DOI":"10.1109\/CVPR42600.2020.01079"},{"key":"10.1016\/j.media.2021.102046_bib0063","doi-asserted-by":"crossref","unstructured":"Tartaglione, E., Barbano, C. A., Berzovini, C., Calandri, M., Grangetto, M., 2020. Unveiling COVID-19 from chest X-ray with deep learning: a hurdles race with small data. arXiv:2004.05405.","DOI":"10.3390\/ijerph17186933"},{"issue":"4","key":"10.1016\/j.media.2021.102046_bib0064","doi-asserted-by":"crossref","first-page":"459","DOI":"10.1038\/s41591-020-0824-5","article-title":"Digital technology and COVID-19","volume":"26","author":"Ting","year":"2020","journal-title":"Nat. Med."},{"key":"10.1016\/j.media.2021.102046_bib0066","series-title":"European Conference of Computer Vision (ECCV)","first-page":"705","article-title":"Quick shift and kernel methods for mode seeking","author":"Vedaldi","year":"2008"},{"key":"10.1016\/j.media.2021.102046_bib0067","series-title":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"3462","article-title":"ChestX-ray8: Hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases","author":"Wang","year":"2017"},{"issue":"9","key":"10.1016\/j.media.2021.102046_bib0068","doi-asserted-by":"crossref","first-page":"840","DOI":"10.1136\/thoraxjnl-2017-211280","article-title":"Severity scoring of lung oedema on the chest radiograph is associated with clinical outcomes in ARDS","volume":"73","author":"Warren","year":"2018","journal-title":"Thorax"},{"key":"10.1016\/j.media.2021.102046_bib0069","unstructured":"WHO, 2020. Coronavirus disease (COVID-19) outbreak. World Health Organization. https:\/\/www.who.int\/emergencies\/diseases\/novel-coronavirus-2019."},{"key":"10.1016\/j.media.2021.102046_bib0070","doi-asserted-by":"crossref","unstructured":"Wong, A., Lin, Z. Q., Wang, L., Chung, A. G., Shen, B., Abbasi, A., Hoshmand-Kochi, M., Duong, T. Q., 2020a. COVIDNet-S: Towards computer-aided severity assessment via training and validation of deep neural networks for geographic extent and opacity extent scoring of chest X-rays for SARS-CoV-2 lung disease severity. arXiv:2005.12855.","DOI":"10.1038\/s41598-021-88538-4"},{"issue":"2","key":"10.1016\/j.media.2021.102046_bib0071","doi-asserted-by":"crossref","first-page":"E72","DOI":"10.1148\/radiol.2020201160","article-title":"Frequency and distribution of chest radiographic findings in COVID-19 positive patients","volume":"296","author":"Wong","year":"2020","journal-title":"Radiology"},{"issue":"3","key":"10.1016\/j.media.2021.102046_bib0072","doi-asserted-by":"crossref","first-page":"591","DOI":"10.1016\/j.media.2014.01.010","article-title":"Weakly supervised histopathology cancer image segmentation and classification","volume":"18","author":"Xu","year":"2014","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.media.2021.102046_bib0073","series-title":"Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support","first-page":"3","article-title":"UNet++: a nested U-Net architecture for medical image segmentation","author":"Zhou","year":"2018"},{"issue":"1","key":"10.1016\/j.media.2021.102046_bib0074","doi-asserted-by":"crossref","first-page":"44","DOI":"10.1093\/nsr\/nwx106","article-title":"A brief introduction to weakly supervised learning","volume":"5","author":"Zhou","year":"2017","journal-title":"Natl. Sci. Rev."},{"issue":"7","key":"10.1016\/j.media.2021.102046_bib0075","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1371\/journal.pone.0236621","article-title":"Deep transfer learning artificial intelligence accurately stages COVID-19 lung disease severity on portable chest radiographs","volume":"15","author":"Zhu","year":"2020","journal-title":"PLoS One"}],"container-title":["Medical Image Analysis"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S136184152100092X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S136184152100092X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,3,29]],"date-time":"2023-03-29T22:48:32Z","timestamp":1680130112000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S136184152100092X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,7]]},"references-count":75,"alternative-id":["S136184152100092X"],"URL":"https:\/\/doi.org\/10.1016\/j.media.2021.102046","relation":{},"ISSN":["1361-8415"],"issn-type":[{"type":"print","value":"1361-8415"}],"subject":[],"published":{"date-parts":[[2021,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"BS-Net: Learning COVID-19 pneumonia severity on a large chest X-ray dataset","name":"articletitle","label":"Article Title"},{"value":"Medical Image Analysis","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.media.2021.102046","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"102046"}}