{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,4]],"date-time":"2024-09-04T07:20:39Z","timestamp":1725434439754},"reference-count":46,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2018,2,1]],"date-time":"2018-02-01T00:00:00Z","timestamp":1517443200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"name":"France Life Imaging","award":["ANR-11-INBS-0006"]}],"content-domain":{"domain":["medicalimageanalysisjournal.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Medical Image Analysis"],"published-print":{"date-parts":[[2018,2]]},"DOI":"10.1016\/j.media.2017.12.007","type":"journal-article","created":{"date-parts":[[2017,12,9]],"date-time":"2017-12-09T17:26:12Z","timestamp":1512840372000},"page":"177-195","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":111,"special_numbering":"C","title":["The first MICCAI challenge on PET tumor segmentation"],"prefix":"10.1016","volume":"44","author":[{"given":"Mathieu","family":"Hatt","sequence":"first","affiliation":[]},{"given":"Baptiste","family":"Laurent","sequence":"additional","affiliation":[]},{"given":"Anouar","family":"Ouahabi","sequence":"additional","affiliation":[]},{"given":"Hadi","family":"Fayad","sequence":"additional","affiliation":[]},{"given":"Shan","family":"Tan","sequence":"additional","affiliation":[]},{"given":"Laquan","family":"Li","sequence":"additional","affiliation":[]},{"given":"Wei","family":"Lu","sequence":"additional","affiliation":[]},{"given":"Vincent","family":"Jaouen","sequence":"additional","affiliation":[]},{"given":"Clovis","family":"Tauber","sequence":"additional","affiliation":[]},{"given":"Jakub","family":"Czakon","sequence":"additional","affiliation":[]},{"given":"Filip","family":"Drapejkowski","sequence":"additional","affiliation":[]},{"given":"Witold","family":"Dyrka","sequence":"additional","affiliation":[]},{"given":"Sorina","family":"Camarasu-Pop","sequence":"additional","affiliation":[]},{"given":"Fr\u00e9d\u00e9ric","family":"Cervenansky","sequence":"additional","affiliation":[]},{"given":"Pascal","family":"Girard","sequence":"additional","affiliation":[]},{"given":"Tristan","family":"Glatard","sequence":"additional","affiliation":[]},{"given":"Michael","family":"Kain","sequence":"additional","affiliation":[]},{"given":"Yao","family":"Yao","sequence":"additional","affiliation":[]},{"given":"Christian","family":"Barillot","sequence":"additional","affiliation":[]},{"given":"Assen","family":"Kirov","sequence":"additional","affiliation":[]},{"given":"Dimitris","family":"Visvikis","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.media.2017.12.007_bib0001","doi-asserted-by":"crossref","first-page":"4223","DOI":"10.1118\/1.2791035","article-title":"A Gaussian mixture model for definition of lung tumor volumes in positron emission tomography","volume":"34","author":"Aristophanous","year":"2007","journal-title":"Med. Phys."},{"key":"10.1016\/j.media.2017.12.007_bib0002","doi-asserted-by":"crossref","first-page":"3331","DOI":"10.1118\/1.2938518","article-title":"The development and testing of a digital PET phantom for the evaluation of tumor volume segmentation techniques","volume":"35","author":"Aristophanous","year":"2008","journal-title":"Med. Phys."},{"key":"10.1016\/j.media.2017.12.007_bib0003","series-title":"Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA \u201907. Society for Industrial and Applied Mathematics","first-page":"1027","article-title":"K-means++: the advantages of careful seeding","author":"Arthur","year":"2007"},{"key":"10.1016\/j.media.2017.12.007_bib0004","doi-asserted-by":"crossref","first-page":"787","DOI":"10.7150\/thno.5629","article-title":"Tumor quantification in clinical positron emission tomography","volume":"3","author":"Bai","year":"2013","journal-title":"Theranostics"},{"key":"10.1016\/j.media.2017.12.007_bib0005","doi-asserted-by":"crossref","unstructured":"Barillot, C., Bannier, E., et\u00a0al., 2016. Shanoir: applying the software as a service distribution model to manage brain imaging research repositories. Front. ICT 3.","DOI":"10.3389\/fict.2016.00025"},{"key":"10.1016\/j.media.2017.12.007_bib0006","doi-asserted-by":"crossref","DOI":"10.1118\/1.4813302","article-title":"Influence of cold walls on PET image quantification and volume segmentation: a phantom study","volume":"40","author":"Berthon","year":"2013","journal-title":"Med. Phys."},{"key":"10.1016\/j.media.2017.12.007_bib0007","doi-asserted-by":"crossref","first-page":"4855","DOI":"10.1088\/0031-9155\/61\/13\/4855","article-title":"ATLAAS: an automatic decision tree-based learning algorithm for advanced image segmentation in positron emission tomography","volume":"61","author":"Berthon","year":"2016","journal-title":"Phys. Med. Biol."},{"key":"10.1016\/j.media.2017.12.007_bib0008","doi-asserted-by":"crossref","DOI":"10.1002\/mp.12312","article-title":"Towards a standard for the evaluation of PET auto-segmentation methods: requirements and implementation","author":"Berthon","year":"2017","journal-title":"Med. Phys."},{"key":"10.1016\/j.media.2017.12.007_bib0009","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","article-title":"Random forests","volume":"45","author":"Breiman","year":"2001","journal-title":"Mach. Learn."},{"key":"10.1016\/j.media.2017.12.007_bib0010","doi-asserted-by":"crossref","first-page":"266","DOI":"10.1109\/83.902291","article-title":"Active contours without edges","volume":"10","author":"Chan","year":"2001","journal-title":"IEEE Trans. Image Process. Publ. IEEE Signal Process. Soc."},{"key":"10.1016\/j.media.2017.12.007_bib0011","series-title":"Presented at the 22nd British Machine Vision Conference","article-title":"Learning dictionaries of discriminative image patches","author":"Dahl","year":"2011"},{"key":"10.1016\/j.media.2017.12.007_bib0012","doi-asserted-by":"crossref","first-page":"119","DOI":"10.1016\/j.mednuc.2009.12.004","article-title":"Les m\u00e9thodes de seuillage en TEP\u202f: un \u00e9tat de l'art","volume":"34","author":"Dewalle-Vignion","year":"2010","journal-title":"M\u00e9decine Nucl."},{"key":"10.1016\/j.media.2017.12.007_bib0013","doi-asserted-by":"crossref","first-page":"9473","DOI":"10.1088\/0031-9155\/60\/24\/9473","article-title":"Is STAPLE algorithm confident to assess segmentation methods in PET imaging? Phys","volume":"60","author":"Dewalle-Vignion","year":"2015","journal-title":"Med. Biol."},{"key":"10.1016\/j.media.2017.12.007_bib0014","first-page":"2121","article-title":"Adaptive subgradient methods for online learning and stochastic optimization","volume":"12","author":"Duchi","year":"2011","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.media.2017.12.007_bib0015","first-page":"1745","article-title":"PET functional volume delineation using an Ant colony segmentation approach","volume":"56","author":"Fayad","year":"2015","journal-title":"J. Nucl. Med."},{"key":"10.1016\/j.media.2017.12.007_bib0016","doi-asserted-by":"crossref","first-page":"76","DOI":"10.1016\/j.compbiomed.2014.04.014","article-title":"A review on segmentation of positron emission tomography images","volume":"50","author":"Foster","year":"2014","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.media.2017.12.007_bib0017","doi-asserted-by":"crossref","first-page":"1427","DOI":"10.1007\/s00259-006-0363-4","article-title":"A gradient-based method for segmenting FDG-PET images: methodology and validation","volume":"34","author":"Geets","year":"2007","journal-title":"Eur J Nucl Med Mol Imaging"},{"key":"10.1016\/j.media.2017.12.007_bib0018","doi-asserted-by":"crossref","first-page":"110","DOI":"10.1109\/TMI.2012.2220154","article-title":"A virtual imaging platform for multi-modality medical image simulation","volume":"32","author":"Glatard","year":"2013","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.media.2017.12.007_bib0019","first-page":"369","article-title":"A new spatial fuzzy c-means for spatial clustering","volume":"14","author":"Guo","year":"2015","journal-title":"Wseas Trans. Comput."},{"key":"10.1016\/j.media.2017.12.007_bib0020","doi-asserted-by":"crossref","first-page":"610","DOI":"10.1109\/TSMC.1973.4309314","article-title":"Textural features for image classification","author":"Haralick","year":"1973","journal-title":"IEEE Trans. Syst. Man Cybern. SMC-3"},{"key":"10.1016\/j.media.2017.12.007_bib0021","doi-asserted-by":"crossref","first-page":"881","DOI":"10.1109\/TMI.2008.2012036","article-title":"A fuzzy locally adaptive Bayesian segmentation approach for volume determination in PET","volume":"28","author":"Hatt","year":"2009","journal-title":"IEEE Trans. Med. Imag."},{"key":"10.1016\/j.media.2017.12.007_bib0022","doi-asserted-by":"crossref","first-page":"301","DOI":"10.1016\/j.ijrobp.2009.08.018","article-title":"Accurate automatic delineation of heterogeneous functional volumes in positron emission tomography for oncology applications","volume":"77","author":"Hatt","year":"2010","journal-title":"Int. J. Radiat. Oncol. Biol. Phys."},{"key":"10.1016\/j.media.2017.12.007_bib0023","series-title":"Classification and evaluation strategies of auto-segmentation approaches for PET","author":"Hatt","year":"2017"},{"key":"10.1016\/j.media.2017.12.007_bib0024","doi-asserted-by":"crossref","first-page":"151","DOI":"10.1007\/s00259-016-3427-0","article-title":"Characterization of PET\/CT images using texture analysis: the past, the present\u2026 any future?","volume":"44","author":"Hatt","year":"2017","journal-title":"Eur. J. Nucl. Med. Mol. Imag."},{"issue":"Pt 3","key":"10.1016\/j.media.2017.12.007_bib0025","doi-asserted-by":"crossref","first-page":"300","DOI":"10.1016\/j.compmedimag.2015.09.006","article-title":"Regarding \u201cSegmentation of heterogeneous or small FDG PET positive tissue based on a 3D-locally adaptive random walk algorithm\u201d By DP. Onoma et\u00a0al","volume":"46","author":"Hatt","year":"2015","journal-title":"Comput. Med. Imaging Graph. Off. J. Comput. Med. Imaging Soc."},{"key":"10.1016\/j.media.2017.12.007_bib0026","doi-asserted-by":"crossref","first-page":"1099","DOI":"10.1088\/0031-9155\/55\/4\/013","article-title":"Effects of cold sphere walls in PET phantom measurements on the volume reproducing threshold","volume":"55","author":"Hofheinz","year":"2010","journal-title":"Phys. Med. Biol."},{"key":"10.1016\/j.media.2017.12.007_bib0027","doi-asserted-by":"crossref","first-page":"4773","DOI":"10.1109\/TIP.2014.2353854","article-title":"Variational segmentation of vector-valued images with gradient vector flow","volume":"23","author":"Jaouen","year":"2014","journal-title":"IEEE Trans. Image Process. Publ. IEEE Signal Process. Soc."},{"key":"10.1016\/j.media.2017.12.007_bib0028","doi-asserted-by":"crossref","first-page":"3013","DOI":"10.1118\/1.4921067","article-title":"Quantitative evaluation of image segmentation incorporating medical consideration functions","volume":"42","author":"Kim","year":"2015","journal-title":"Med. Phys."},{"key":"10.1016\/j.media.2017.12.007_bib0029","series-title":"Presented at the Advances in neural information processing systems","first-page":"1097","article-title":"Imagenet classification with deep convolutional neural networks","author":"Krizhevsky","year":"2012"},{"key":"10.1016\/j.media.2017.12.007_bib0030","doi-asserted-by":"crossref","first-page":"5720","DOI":"10.1118\/1.4929561","article-title":"SPEQTACLE: an automated generalized fuzzy C-means algorithm for tumor delineation in PET","volume":"42","author":"Lapuyade-Lahorgue","year":"2015","journal-title":"Med. Phys."},{"key":"10.1016\/j.media.2017.12.007_bib0031","doi-asserted-by":"crossref","first-page":"2026","DOI":"10.1109\/JPROC.2009.2027925","article-title":"Incorporating patient-specific variability in the simulation of realistic whole-body 18f-fdg distributions for oncology applications","volume":"9","author":"Le Maitre","year":"2009","journal-title":"Proc. IEEE"},{"key":"10.1016\/j.media.2017.12.007_bib0032","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1038\/nature14539","article-title":"Deep learning","volume":"521","author":"LeCun","year":"2015","journal-title":"Nature"},{"key":"10.1016\/j.media.2017.12.007_bib0033","doi-asserted-by":"crossref","first-page":"2096","DOI":"10.1109\/TIP.2007.899601","article-title":"Active contour external force using vector field convolution for image segmentation","volume":"16","author":"Li","year":"2007","journal-title":"IEEE Trans. Image Process. Publ. IEEE Signal Process. Soc."},{"key":"10.1016\/j.media.2017.12.007_bib0034","doi-asserted-by":"crossref","DOI":"10.1118\/1.4793721","article-title":"Combining multiple FDG-PET radiotherapy target segmentation methods to reduce the effect of variable performance of individual segmentation methods","volume":"40","author":"McGurk","year":"2013","journal-title":"Med. Phys."},{"key":"10.1016\/j.media.2017.12.007_bib0035","unstructured":"Merkel, D., 2014. Docker: lightweight linux containers for consistent development and deployment. Linux J 2014."},{"key":"10.1016\/j.media.2017.12.007_bib0036","doi-asserted-by":"crossref","first-page":"4803","DOI":"10.1118\/1.3222732","article-title":"An iterative technique to segment PET lesions using a Monte Carlo based mathematical model","volume":"36","author":"Nehmeh","year":"2009","journal-title":"Med. Phys."},{"key":"10.1016\/j.media.2017.12.007_bib0037","doi-asserted-by":"crossref","first-page":"62","DOI":"10.1109\/TSMC.1979.4310076","article-title":"A threshold selection method from gray-level histograms","volume":"9","author":"Otsu","year":"1979","journal-title":"IEEE Trans. Syst. Man Cybern."},{"key":"10.1016\/j.media.2017.12.007_bib0038","doi-asserted-by":"crossref","DOI":"10.1118\/1.4826162","article-title":"Investigation of realistic PET simulations incorporating tumor patient's specificity using anthropomorphic models: creation of an oncology database","volume":"40","author":"Papadimitroulas","year":"2013","journal-title":"Med. Phys."},{"key":"10.1016\/j.media.2017.12.007_bib0039","doi-asserted-by":"crossref","first-page":"2006","DOI":"10.1109\/TMI.2012.2202322","article-title":"Comparative study with new accuracy metrics for target volume contouring in PET image guided radiation therapy","volume":"31","author":"Shepherd","year":"2012","journal-title":"IEEE Trans. Med. Imag."},{"key":"10.1016\/j.media.2017.12.007_bib0040","doi-asserted-by":"crossref","first-page":"5383","DOI":"10.1088\/1361-6560\/aa6e20","article-title":"Adaptive region-growing with maximum curvature strategy for tumor segmentation in (18)F-FDG PET","volume":"62","author":"Tan","year":"2017","journal-title":"Phys. Med. Biol."},{"key":"10.1016\/j.media.2017.12.007_bib0042","doi-asserted-by":"crossref","first-page":"1146","DOI":"10.1109\/TMI.2012.2233209","article-title":"Comments on \u201ccomparative study with new accuracy metrics for target volume contouring in PET image guided radiation therapy","volume":"32","author":"van den Hoff","year":"2013","journal-title":"IEEE Trans. Med. Imag."},{"key":"10.1016\/j.media.2017.12.007_bib0043","doi-asserted-by":"crossref","first-page":"173","DOI":"10.2967\/jnumed.109.068411","article-title":"SUV: from silly useless value to smart uptake value","volume":"51","author":"Visser","year":"2010","journal-title":"J. Nucl. Med."},{"key":"10.1016\/j.media.2017.12.007_bib0044","doi-asserted-by":"crossref","first-page":"117","DOI":"10.1016\/j.radonc.2010.10.006","article-title":"Gradient-based delineation of the primary GTV on FDG-PET in non-small cell lung cancer: a comparison with threshold-based approaches, CT and surgical specimens","volume":"98","author":"Wanet","year":"2011","journal-title":"Radiother. Oncol."},{"key":"10.1016\/j.media.2017.12.007_bib0045","doi-asserted-by":"crossref","first-page":"903","DOI":"10.1109\/TMI.2004.828354","article-title":"Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation","volume":"23","author":"Warfield","year":"2004","journal-title":"IEEE Trans. Med. Imag."},{"key":"10.1016\/j.media.2017.12.007_bib0046","doi-asserted-by":"crossref","first-page":"2165","DOI":"10.1007\/s00259-010-1423-3","article-title":"PET-guided delineation of radiation therapy treatment volumes: a survey of image segmentation techniques","volume":"37","author":"Zaidi","year":"2010","journal-title":"Eur. J. Nucl. Med. Mol. Imag."},{"key":"10.1016\/j.media.2017.12.007_bib0047","doi-asserted-by":"crossref","first-page":"5353","DOI":"10.1118\/1.4736812","article-title":"The use of zeolites to generate PET phantoms for the validation of quantification strategies in oncology","volume":"39","author":"Zito","year":"2012","journal-title":"Med. Phys."}],"container-title":["Medical Image Analysis"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1361841517301895?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1361841517301895?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,10,7]],"date-time":"2019-10-07T16:11:59Z","timestamp":1570464719000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1361841517301895"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,2]]},"references-count":46,"alternative-id":["S1361841517301895"],"URL":"https:\/\/doi.org\/10.1016\/j.media.2017.12.007","relation":{},"ISSN":["1361-8415"],"issn-type":[{"value":"1361-8415","type":"print"}],"subject":[],"published":{"date-parts":[[2018,2]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"The first MICCAI challenge on PET tumor segmentation","name":"articletitle","label":"Article Title"},{"value":"Medical Image Analysis","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.media.2017.12.007","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2017 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}