{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,9]],"date-time":"2024-07-09T04:54:43Z","timestamp":1720500883853},"reference-count":48,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2016,10,1]],"date-time":"2016-10-01T00:00:00Z","timestamp":1475280000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["medicalimageanalysisjournal.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Medical Image Analysis"],"published-print":{"date-parts":[[2016,10]]},"DOI":"10.1016\/j.media.2016.06.028","type":"journal-article","created":{"date-parts":[[2016,6,25]],"date-time":"2016-06-25T19:22:23Z","timestamp":1466882543000},"page":"102-106","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":14,"special_numbering":"C","title":["(Hyper)-graphical models in biomedical image analysis"],"prefix":"10.1016","volume":"33","author":[{"given":"Nikos","family":"Paragios","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8500-788X","authenticated-orcid":false,"given":"Enzo","family":"Ferrante","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4897-9356","authenticated-orcid":false,"given":"Ben","family":"Glocker","sequence":"additional","affiliation":[]},{"given":"Nikos","family":"Komodakis","sequence":"additional","affiliation":[]},{"given":"Sarah","family":"Parisot","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8228-0437","authenticated-orcid":false,"given":"Evangelia I.","family":"Zacharaki","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.media.2016.06.028_bib0001","series-title":"British Machine Vision Conference, BMVC 2014, Nottingham, UK, September 1\u20135, 2014","article-title":"Discrete multi atlas segmentation using agreement constraints","author":"Alchatzidis","year":"2014"},{"key":"10.1016\/j.media.2016.06.028_bib0048","article-title":"A discrete MRF framework for integrated multi-atlas registration and segmentation","author":"Alchatzidis","year":"2016","journal-title":"Int. J. Comput. Vision"},{"issue":"7","key":"10.1016\/j.media.2016.06.028_bib0002","doi-asserted-by":"crossref","first-page":"1323","DOI":"10.1109\/TPAMI.2014.2388218","article-title":"Generalized flows for optimal inference in higher order MRF-MAP","volume":"37","author":"Arora","year":"2015","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.media.2016.06.028_bib0003","series-title":"Medical Image Computing and Computer-Assisted Intervention - MICCAI 2012 - 15th International Conference, Nice, France, October 1\u20135, 2012, Proceedings, Part I","first-page":"569","article-title":"Prior knowledge, random walks and human skeletal muscle segmentation","author":"Baudin","year":"2012"},{"key":"10.1016\/j.media.2016.06.028_bib0004","series-title":"Medical Image Computing and Computer-Assisted Intervention - MICCAI 2013 - 16th International Conference, Nagoya, Japan, September 22\u201326, 2013, Proceedings, Part III","first-page":"219","article-title":"Discriminative parameter estimation for random walks segmentation","author":"Baudin","year":"2013"},{"key":"10.1016\/j.media.2016.06.028_bib0005","series-title":"2009\u00a0IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2009), 20\u201325 June 2009, Miami, Florida, USA","first-page":"1295","article-title":"Shape priors and discrete mrfs for knowledge-based segmentation","author":"Besbes","year":"2009"},{"issue":"2","key":"10.1016\/j.media.2016.06.028_bib0006","doi-asserted-by":"crossref","first-page":"109","DOI":"10.1007\/s11263-006-7934-5","article-title":"Graph cuts and efficient N-D image segmentation","volume":"70","author":"Boykov","year":"2006","journal-title":"Int. J. Comput. Vis."},{"key":"10.1016\/j.media.2016.06.028_bib0007","series-title":"Medical Image Computing and Computer-Assisted Intervention - MICCAI 2000, Third International Conference, Pittsburgh, Pennsylvania, USA, October 11\u201314, 2000, Proceedings","first-page":"276","article-title":"Interactive organ segmentation using graph cuts","author":"Boykov","year":"2000"},{"issue":"12","key":"10.1016\/j.media.2016.06.028_bib0008","doi-asserted-by":"crossref","first-page":"1283","DOI":"10.1109\/34.735802","article-title":"A variable window approach to early vision","volume":"20","author":"Boykov","year":"1998","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"1","key":"10.1016\/j.media.2016.06.028_bib0009","doi-asserted-by":"crossref","first-page":"120","DOI":"10.1109\/JBHI.2013.2257820","article-title":"An explicit shape-constrained mrf-based contour evolution method for 2-d medical image segmentation","volume":"18","author":"Chittajallu","year":"2014","journal-title":"IEEE J. Biomed. Health Inform."},{"key":"10.1016\/j.media.2016.06.028_bib0010","series-title":"12th IEEE International Symposium on Biomedical Imaging, ISBI 2015, Brooklyn, NY, USA, April 16\u201319, 2015","first-page":"1097","article-title":"Modular linear iconic matching using higher order graphs","author":"Fecamp","year":"2015"},{"issue":"6","key":"10.1016\/j.media.2016.06.028_bib0011","doi-asserted-by":"crossref","first-page":"791","DOI":"10.1007\/s11548-015-1205-2","article-title":"Slice-to-volume deformable registration: efficient one-shot consensus between plane selection and in-plane deformation","volume":"10","author":"Ferrante","year":"2015","journal-title":"Int. J. Comput. Assist. Radiol. Surg."},{"key":"10.1016\/j.media.2016.06.028_bib0012","series-title":"Medical Image Computing and Computer-Assisted Intervention - MICCAI 2013 - 16th International Conference, Nagoya, Japan, September 22\u201326, 2013, Proceedings, Part III","first-page":"163","article-title":"Non-rigid 2d-3d medical image registration using Markov random fields","author":"Ferrante","year":"2013"},{"issue":"7","key":"10.1016\/j.media.2016.06.028_bib0013","doi-asserted-by":"crossref","first-page":"1387","DOI":"10.1109\/TPAMI.2014.2382109","article-title":"A hypergraph-based reduction for higher-order binary Markov random fields","volume":"37","author":"Fix","year":"2015","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"6","key":"10.1016\/j.media.2016.06.028_bib0014","doi-asserted-by":"crossref","first-page":"721","DOI":"10.1109\/TPAMI.1984.4767596","article-title":"Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images","volume":"6","author":"Geman","year":"1984","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.media.2016.06.028_bib0015","series-title":"Information Processing in Medical Imaging, 21st International Conference, IPMI 2009, Williamsburg, VA, USA, July 5\u201310, 2009. Proceedings","first-page":"540","article-title":"Dense registration with deformation priors","author":"Glocker","year":"2009"},{"issue":"6","key":"10.1016\/j.media.2016.06.028_bib0016","doi-asserted-by":"crossref","first-page":"731","DOI":"10.1016\/j.media.2008.03.006","article-title":"Dense image registration through mrfs and efficient linear programming","volume":"12","author":"Glocker","year":"2008","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.media.2016.06.028_bib0017","series-title":"2008\u00a0IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2008), 24\u201326 June 2008, Anchorage, Alaska, USA","article-title":"Optical flow estimation with uncertainties through dynamic mrfs","author":"Glocker","year":"2008"},{"key":"10.1016\/j.media.2016.06.028_bib0018","doi-asserted-by":"crossref","first-page":"219","DOI":"10.1146\/annurev-bioeng-071910-124649","article-title":"Deformable medical image registration: setting the state of the art with discrete methods","volume":"13","author":"Glocker","year":"2011","journal-title":"Annu. Rev. Biomed. Eng."},{"issue":"11","key":"10.1016\/j.media.2016.06.028_bib0019","doi-asserted-by":"crossref","first-page":"1768","DOI":"10.1109\/TPAMI.2006.233","article-title":"Random walks for image segmentation","volume":"28","author":"Grady","year":"2006","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.media.2016.06.028_bib0020","doi-asserted-by":"crossref","first-page":"271","DOI":"10.1111\/j.2517-6161.1989.tb01764.x","article-title":"Exact maximum a posteriori estimation for binary images","author":"Greig","year":"1989","journal-title":"J. R. Stat. Soc.. Series B (Methodol.)"},{"issue":"6","key":"10.1016\/j.media.2016.06.028_bib0021","doi-asserted-by":"crossref","first-page":"1234","DOI":"10.1109\/TPAMI.2010.91","article-title":"Transformation of general binary MRF minimization to the first-order case","volume":"33","author":"Ishikawa","year":"2011","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"4","key":"10.1016\/j.media.2016.06.028_bib0022","doi-asserted-by":"crossref","first-page":"426","DOI":"10.1016\/j.media.2011.01.006","article-title":"Automatic inference of articulated spine models in CT images using high-order Markov random fields","volume":"15","author":"Kadoury","year":"2011","journal-title":"Med. Image Anal."},{"issue":"7","key":"10.1016\/j.media.2016.06.028_bib0023","doi-asserted-by":"crossref","first-page":"1227","DOI":"10.1109\/TMI.2013.2244903","article-title":"Spine segmentation in medical images using manifold embeddings and higher-order MRFs","volume":"32","author":"Kadoury","year":"2013","journal-title":"IEEE Trans. Med. Imag."},{"issue":"2","key":"10.1016\/j.media.2016.06.028_bib0024","doi-asserted-by":"crossref","first-page":"155","DOI":"10.1007\/s11263-015-0809-x","article-title":"A comparative study of modern inference techniques for structured discrete energy minimization problems","volume":"115","author":"Kappes","year":"2015","journal-title":"Int. J. Comput. Vis."},{"key":"10.1016\/j.media.2016.06.028_bib0025","doi-asserted-by":"crossref","first-page":"80","DOI":"10.1016\/j.cviu.2015.10.016","article-title":"Lazy generic cuts","volume":"143","author":"Khandelwal","year":"2016","journal-title":"Comput. Vis. Image Understand."},{"issue":"9","key":"10.1016\/j.media.2016.06.028_bib0026","doi-asserted-by":"crossref","first-page":"1645","DOI":"10.1109\/TPAMI.2008.217","article-title":"P3 & beyond: move making algorithms for solving higher order functions","volume":"31","author":"Kohli","year":"2009","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.media.2016.06.028_bib0027","series-title":"Probabilistic Graphical Models - Principles and Techniques","author":"Koller","year":"2009"},{"issue":"10","key":"10.1016\/j.media.2016.06.028_bib0028","doi-asserted-by":"crossref","first-page":"1568","DOI":"10.1109\/TPAMI.2006.200","article-title":"Convergent tree-reweighted message passing for energy minimization","volume":"28","author":"Kolmogorov","year":"2006","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"1","key":"10.1016\/j.media.2016.06.028_bib0029","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1561\/0600000066","article-title":"(hyper)-graphs inference through convex relaxations and move making algorithms: contributions and applications in artificial vision","volume":"10","author":"Komodakis","year":"2016","journal-title":"Found. Trends Comput. Graph. Vis."},{"issue":"3","key":"10.1016\/j.media.2016.06.028_bib0030","doi-asserted-by":"crossref","first-page":"531","DOI":"10.1109\/TPAMI.2010.108","article-title":"MRF energy minimization and beyond via dual decomposition","volume":"33","author":"Komodakis","year":"2011","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"1","key":"10.1016\/j.media.2016.06.028_bib0031","doi-asserted-by":"crossref","first-page":"14","DOI":"10.1016\/j.cviu.2008.06.007","article-title":"Performance vs computational efficiency for optimizing single and dynamic mrfs: setting the state of the art with primal-dual strategies","volume":"112","author":"Komodakis","year":"2008","journal-title":"Comput. Vis. Image Understand."},{"issue":"7","key":"10.1016\/j.media.2016.06.028_bib0032","doi-asserted-by":"crossref","first-page":"1425","DOI":"10.1109\/TPAMI.2014.2368990","article-title":"A framework for efficient structured max-margin learning of high-order MRF models","volume":"37","author":"Komodakis","year":"2015","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"7","key":"10.1016\/j.media.2016.06.028_bib0033","doi-asserted-by":"crossref","first-page":"1347","DOI":"10.1109\/TPAMI.2014.2369046","article-title":"Submodular relaxation for inference in Markov random fields","volume":"37","author":"Osokin","year":"2015","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"4","key":"10.1016\/j.media.2016.06.028_bib0034","doi-asserted-by":"crossref","first-page":"622","DOI":"10.1016\/j.media.2010.07.002","article-title":"DRAMMS: deformable registration via attribute matching and mutual-saliency weighting","volume":"15","author":"Ou","year":"2011","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.media.2016.06.028_bib0035","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1371\/journal.pone.0144200","article-title":"A probabilistic atlas of diffuse who grade ii glioma locations in the brain","volume":"11","author":"Parisot","year":"2016","journal-title":"PLoS ONE"},{"issue":"4","key":"10.1016\/j.media.2016.06.028_bib0036","doi-asserted-by":"crossref","first-page":"647","DOI":"10.1016\/j.media.2014.02.006","article-title":"Concurrent tumor segmentation and registration with uncertainty-based sparse non-uniform graphs","volume":"18","author":"Parisot","year":"2014","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.media.2016.06.028_bib0037","series-title":"Proceedings of the National Conference on Artificial Intelligence. Pittsburgh, PA, August 18\u201320, 1982.","first-page":"133","article-title":"Reverend bayes on inference engines: a distributed hierarchical approach","author":"Pearl","year":"1982"},{"issue":"1","key":"10.1016\/j.media.2016.06.028_bib0038","doi-asserted-by":"crossref","first-page":"39","DOI":"10.1016\/j.cviu.2008.05.007","article-title":"Efficient belief propagation for higher-order cliques using linear constraint nodes","volume":"112","author":"Potetz","year":"2008","journal-title":"Comput. Vis. Image Understand."},{"key":"10.1016\/j.media.2016.06.028_bib0039","series-title":"2007\u00a0IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2007), 18\u201323 June 2007, Minneapolis, Minnesota, USA","article-title":"Optimizing binary mrfs via extended roof duality","author":"Rother","year":"2007"},{"key":"10.1016\/j.media.2016.06.028_bib0040","doi-asserted-by":"crossref","first-page":"54","DOI":"10.1016\/j.cviu.2015.05.002","article-title":"Higher order maximum persistency and comparison theorems","volume":"143","author":"Shekhovtsov","year":"2016","journal-title":"Comput. Vis. Image Understand."},{"key":"10.1016\/j.media.2016.06.028_bib0041","series-title":"Medical Image Computing and Computer-Assisted Intervention - MICCAI 2009, 12th International Conference, London, UK, September 20\u201324, 2009, Proceedings, Part I","first-page":"672","article-title":"Graphical models and deformable diffeomorphic population registration using global and local metrics","author":"Sotiras","year":"2009"},{"key":"10.1016\/j.media.2016.06.028_bib0042","doi-asserted-by":"crossref","first-page":"31","DOI":"10.1016\/j.media.2015.06.003","article-title":"An efficient conditional random field approach for automatic and interactive neuron segmentation","volume":"27","author":"Uzunbas","year":"2016","journal-title":"Med. Image Anal."},{"issue":"11","key":"10.1016\/j.media.2016.06.028_bib0043","doi-asserted-by":"crossref","first-page":"1610","DOI":"10.1016\/j.cviu.2013.07.004","article-title":"Markov random field modeling, inference & learning in computer vision & image understanding: a survey","volume":"117","author":"Wang","year":"2013","journal-title":"Comput. Vis. Image Understand."},{"key":"10.1016\/j.media.2016.06.028_bib0044","series-title":"Medical Image Computing and Computer-Assisted Intervention - MICCAI 2010, 13th International Conference, Beijing, China, September 20\u201324, 2010, Proceedings, Part III","first-page":"189","article-title":"3D knowledge-based segmentation using pose-invariant higher-order graphs","author":"Wang","year":"2010"},{"key":"10.1016\/j.media.2016.06.028_bib0045","series-title":"Medical Image Computing and Computer-Assisted Intervention - MICCAI 2013 - 16th International Conference, Nagoya, Japan, September 22\u201326, 2013, Proceedings, Part III","first-page":"267","article-title":"Joint model-pixel segmentation with pose-invariant deformable graph-priors","author":"Xiang","year":"2013"},{"key":"10.1016\/j.media.2016.06.028_bib0046","series-title":"Advances in Neural Information Processing Systems 13, Papers from Neural Information Processing Systems (NIPS) 2000, Denver, CO, USA","first-page":"689","article-title":"Generalized belief propagation","author":"Yedidia","year":"2000"},{"issue":"4","key":"10.1016\/j.media.2016.06.028_bib0047","doi-asserted-by":"crossref","first-page":"550","DOI":"10.1016\/j.media.2010.04.003","article-title":"Linear intensity-based image registration by Markov random fields and discrete optimization","volume":"14","author":"Zikic","year":"2010","journal-title":"Med. Image Anal."}],"container-title":["Medical Image Analysis"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1361841516301062?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1361841516301062?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,6,17]],"date-time":"2024-06-17T22:11:44Z","timestamp":1718662304000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1361841516301062"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2016,10]]},"references-count":48,"alternative-id":["S1361841516301062"],"URL":"https:\/\/doi.org\/10.1016\/j.media.2016.06.028","relation":{},"ISSN":["1361-8415"],"issn-type":[{"value":"1361-8415","type":"print"}],"subject":[],"published":{"date-parts":[[2016,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"(Hyper)-graphical models in biomedical image analysis","name":"articletitle","label":"Article Title"},{"value":"Medical Image Analysis","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.media.2016.06.028","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"Crown Copyright \u00a9 2016 Published by Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}