{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,8]],"date-time":"2024-08-08T20:36:36Z","timestamp":1723149396741},"reference-count":57,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2016,1,1]],"date-time":"2016-01-01T00:00:00Z","timestamp":1451606400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100000024","name":"Canada Institutes of Health Research","doi-asserted-by":"publisher","award":["MOP 89844"],"id":[{"id":"10.13039\/501100000024","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["medicalimageanalysisjournal.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Medical Image Analysis"],"published-print":{"date-parts":[[2016,1]]},"DOI":"10.1016\/j.media.2015.05.005","type":"journal-article","created":{"date-parts":[[2015,5,29]],"date-time":"2015-05-29T14:17:26Z","timestamp":1432909046000},"page":"45-56","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":22,"special_numbering":"C","title":["Hierarchical max-flow segmentation framework for multi-atlas segmentation with Kohonen self-organizing map based Gaussian mixture modeling"],"prefix":"10.1016","volume":"27","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-9635-0253","authenticated-orcid":false,"given":"Martin","family":"Rajchl","sequence":"first","affiliation":[]},{"given":"John S.H.","family":"Baxter","sequence":"additional","affiliation":[]},{"given":"A. Jonathan","family":"McLeod","sequence":"additional","affiliation":[]},{"given":"Jing","family":"Yuan","sequence":"additional","affiliation":[]},{"given":"Wu","family":"Qiu","sequence":"additional","affiliation":[]},{"given":"Terry M.","family":"Peters","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0760-8647","authenticated-orcid":false,"given":"Ali R.","family":"Khan","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.media.2015.05.005_bib0001","series-title":"MRBrainS 2013 - MICCAI Grand Challenge on MR Brain Segmentation 2013","article-title":"Map\u2013based framework for segmentation of mr brain images based on visual appearance and prior shape","author":"Alansary","year":"2014"},{"key":"10.1016\/j.media.2015.05.005_bib0002","unstructured":"ANTs, 2010. ANTs - Advanced Normalization Tools. http:\/\/sourceforge.net\/projects\/advants\/. accessed: (05.19.15)."},{"key":"10.1016\/j.media.2015.05.005_bib0003","first-page":"134","article-title":"A fast continuous max-flow approach to non-convex multilabeling problems","volume":"8293","author":"Bae","year":"2011","journal-title":"Efficient Global Minimiz. Methods Variat. Prob. Imaging Vis."},{"key":"10.1016\/j.media.2015.05.005_bib0004","series-title":"SPIE Medical Imaging","first-page":"903410","article-title":"Smoothness parameter tuning for generalized hierarchical continuous max-flow segmentation","author":"Baxter","year":"2014"},{"key":"10.1016\/j.media.2015.05.005_bib0005","article-title":"A continuous max-flow approach to general hierarchical multi-labelling problems","author":"Baxter","year":"2014","journal-title":"arXiv preprint arXiv:1404.0336"},{"key":"10.1016\/j.media.2015.05.005_bib0006","article-title":"A continuous max-flow approach to multi-labeling problems under arbitrary region regularization","author":"Baxter","year":"2014","journal-title":"arXiv preprint arXiv:1405.0892"},{"key":"10.1016\/j.media.2015.05.005_bib0007","author":"Bertsekas","year":"1999","journal-title":"Nonlinear programming"},{"issue":"4","key":"10.1016\/j.media.2015.05.005_bib0008","doi-asserted-by":"crossref","first-page":"1151","DOI":"10.1016\/j.neuroimage.2009.01.011","article-title":"White matter lesion extension to automatic brain tissue segmentation on mri","volume":"45","author":"de Boer","year":"2009","journal-title":"Neuroimage"},{"key":"10.1016\/j.media.2015.05.005_bib0009","series-title":"Medical Image Computing and Computer-Assisted Intervention\u2013MICCAI 2000","first-page":"276","article-title":"Interactive organ segmentation using graph cuts","author":"Boykov","year":"2000"},{"issue":"1","key":"10.1016\/j.media.2015.05.005_bib0010","doi-asserted-by":"crossref","first-page":"38","DOI":"10.1007\/s11263-012-0531-x","article-title":"Minimizing energies with hierarchical costs","volume":"100","author":"Delong","year":"2012","journal-title":"Int. J. Comput. Vis."},{"issue":"1","key":"10.1016\/j.media.2015.05.005_bib0011","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1111\/j.2517-6161.1977.tb01600.x","article-title":"Maximum likelihood from incomplete data via the em algorithm","volume":"39","author":"Dempster","year":"1977","journal-title":"J. R. Stat. Soc."},{"key":"10.1016\/j.media.2015.05.005_bib0012","doi-asserted-by":"crossref","DOI":"10.1016\/j.mri.2014.03.006","article-title":"Non-locally regularized segmentation of multiple sclerosis lesion from multi-channel mri data","author":"Gao","year":"2014","journal-title":"Magn. Reson. Imaging"},{"issue":"2","key":"10.1016\/j.media.2015.05.005_bib0013","doi-asserted-by":"crossref","first-page":"378","DOI":"10.1016\/j.neuroimage.2011.03.080","article-title":"Spatial decision forests for ms lesion segmentation in multi-channel magnetic resonance images","volume":"57","author":"Geremia","year":"2011","journal-title":"NeuroImage"},{"issue":"9","key":"10.1016\/j.media.2015.05.005_bib0014","doi-asserted-by":"crossref","first-page":"1233","DOI":"10.1109\/TMI.2006.880668","article-title":"Constrained Gaussian mixture model framework for automatic segmentation of MR brain images","volume":"25","author":"Greenspan","year":"2006","journal-title":"Med. Imaging IEEE Trans."},{"issue":"1","key":"10.1016\/j.media.2015.05.005_bib0015","doi-asserted-by":"crossref","first-page":"115","DOI":"10.1016\/j.neuroimage.2006.05.061","article-title":"Automatic anatomical brain MRI segmentation combining label propagation and decision fusion","volume":"33","author":"Heckemann","year":"2006","journal-title":"NeuroImage"},{"issue":"4","key":"10.1016\/j.media.2015.05.005_bib0016","doi-asserted-by":"crossref","first-page":"543","DOI":"10.1016\/j.media.2009.05.004","article-title":"Statistical shape models for 3D medical image segmentation: a review","volume":"13","author":"Heimann","year":"2009","journal-title":"Med. Image Anal."},{"issue":"6","key":"10.1016\/j.media.2015.05.005_bib0017","doi-asserted-by":"crossref","first-page":"1299","DOI":"10.1109\/72.963766","article-title":"Self-organizing maps, vector quantization, and mixture modeling","volume":"12","author":"Heskes","year":"2001","journal-title":"Neural Netw. IEEE Trans."},{"issue":"10","key":"10.1016\/j.media.2015.05.005_bib0018","doi-asserted-by":"crossref","first-page":"1333","DOI":"10.1109\/TPAMI.2003.1233908","article-title":"Exact optimization for markov random fields with convex priors","volume":"25","author":"Ishikawa","year":"2003","journal-title":"Pattern Anal. Mach. Intell. IEEE Trans."},{"key":"10.1016\/j.media.2015.05.005_bib0019","doi-asserted-by":"crossref","first-page":"60","DOI":"10.1016\/j.neucom.2012.12.067","article-title":"Adaptive scale fuzzy local Gaussian mixture model for brain MR image segmentation","volume":"134","author":"Ji","year":"2014","journal-title":"Neurocomputing"},{"issue":"2","key":"10.1016\/j.media.2015.05.005_bib0020","doi-asserted-by":"crossref","first-page":"109","DOI":"10.1016\/S1361-8415(96)80008-9","article-title":"Segmentation of brain tissue from magnetic resonance images","volume":"1","author":"Kapur","year":"1996","journal-title":"Med. image Anal."},{"issue":"9","key":"10.1016\/j.media.2015.05.005_bib0021","doi-asserted-by":"crossref","first-page":"1464","DOI":"10.1109\/5.58325","article-title":"The self-organizing map","volume":"78","author":"Kohonen","year":"1990","journal-title":"Proc. of the IEEE"},{"key":"10.1016\/j.media.2015.05.005_bib0022","series-title":"Proceedings of the IEEE International Conference on Computer Vision, 2001. ICCV 2001. Proceedings. Eighth","first-page":"508","article-title":"Computing visual correspondence with occlusions using graph cuts","volume":"2","author":"Kolmogorov","year":"2001"},{"key":"10.1016\/j.media.2015.05.005_bib0023","series-title":"SPIE Medical Imaging","first-page":"86691M","article-title":"Improving whole-brain segmentations through incorporating regional image intensity statistics","volume":"8669","author":"Ledig","year":"2013"},{"issue":"3","key":"10.1016\/j.media.2015.05.005_bib0024","doi-asserted-by":"crossref","first-page":"1160","DOI":"10.1016\/j.neuroimage.2006.07.046","article-title":"Automatic segmentation of left and right cerebral hemispheres from MRI brain volumes using the graph cuts algorithm","volume":"34","author":"Liang","year":"2007","journal-title":"NeuroImage"},{"issue":"3","key":"10.1016\/j.media.2015.05.005_bib0026","doi-asserted-by":"crossref","first-page":"2352","DOI":"10.1016\/j.neuroimage.2009.10.026","article-title":"Fast and robust multi-atlas segmentation of brain magnetic resonance images","volume":"49","author":"L\u00f6tj\u00f6nen","year":"2010","journal-title":"Neuroimage"},{"key":"10.1016\/j.media.2015.05.005_bib0027","unstructured":"MALC, 2012. MICCAI grand challenge and workshop on multi-atlas labeling. http:\/\/masi.vuse.vanderbilt.edu\/workshop2012\/. accessed: (05.19.15)."},{"issue":"9","key":"10.1016\/j.media.2015.05.005_bib0028","doi-asserted-by":"crossref","first-page":"1498","DOI":"10.1162\/jocn.2007.19.9.1498","article-title":"Open access series of imaging studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults","volume":"19","author":"Marcus","year":"2007","journal-title":"J. Cogn. Neurosci."},{"key":"10.1016\/j.media.2015.05.005_bib0029","series-title":"Advances in Visual Computing","first-page":"1079","article-title":"Optimal weights for convex functionals in medical image segmentation","author":"McIntosh","year":"2009"},{"issue":"3","key":"10.1016\/j.media.2015.05.005_bib0030","doi-asserted-by":"crossref","first-page":"278","DOI":"10.1016\/j.cmpb.2009.09.002","article-title":"Fast free-form deformation using graphics processing units","volume":"98","author":"Modat","year":"2010","journal-title":"Comput. Methods Prog. Biomed."},{"key":"10.1016\/j.media.2015.05.005_bib0031","unstructured":"MRBrainS, 2013. MICCAI grand challenge on MR brain image segmentation workshop. http:\/\/mrbrains13.isi.uu.nl\/. accessed: (05.19.15)."},{"issue":"5","key":"10.1016\/j.media.2015.05.005_bib0032","doi-asserted-by":"crossref","first-page":"337","DOI":"10.1016\/j.compmedimag.2014.03.003","article-title":"Evaluation of supervised methods for the classification of major tissues and subcortical structures in multispectral brain magnetic resonance images","volume":"38","author":"Murino","year":"2014","journal-title":"Comput. Med. Imaging Graphics"},{"issue":"2","key":"10.1016\/j.media.2015.05.005_bib0033","doi-asserted-by":"crossref","first-page":"191","DOI":"10.1016\/0166-218X(84)90066-0","article-title":"Counting dendrograms: a survey","volume":"7","author":"Murtagh","year":"1984","journal-title":"Discrete Appl. Math."},{"key":"10.1016\/j.media.2015.05.005_bib0034","unstructured":"Neuromorphometrics, 2014. Neuromorphometrics, Inc.http:\/\/www.neuromorphometrics.com\/. accessed: (05.19.15)."},{"key":"10.1016\/j.media.2015.05.005_bib0035","first-page":"1","article-title":"A survey and comparison of discrete and continuous multi-label optimization approaches for the Potts model","author":"Nieuwenhuis","year":"2013","journal-title":"Int. J. Comput. Vis."},{"key":"10.1016\/j.media.2015.05.005_bib0036","series-title":"MRBrainS 2013 - MICCAI Grand Challenge on MR Brain Segmentation 2013","article-title":"Automated brain-tissue segmentation by multi-feature svm classification","author":"Opbroek","year":"2014"},{"key":"10.1016\/j.media.2015.05.005_bib0037","series-title":"Medical Image Computing and Computer-Assisted Intervention-MICCAI 2002","first-page":"140","article-title":"Robust registration of multi-modal images: towards real-time clinical applications","author":"Ourselin","year":"2002"},{"key":"10.1016\/j.media.2015.05.005_bib0038","series-title":"MRBrainS 2013 - MICCAI Grand Challenge on MR Brain Segmentation 2013","article-title":"Automatic segmentation of brain tissues using random forests","author":"Pereira","year":"2014"},{"key":"10.1016\/j.media.2015.05.005_bib0039","series-title":"Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on","first-page":"810","article-title":"A convex relaxation approach for computing minimal partitions","author":"Pock","year":"2009"},{"issue":"9","key":"10.1016\/j.media.2015.05.005_bib0040","doi-asserted-by":"crossref","first-page":"1201","DOI":"10.1109\/TMI.2007.901433","article-title":"A hierarchical algorithm for MR brain image parcellation","volume":"26","author":"Pohl","year":"2007","journal-title":"Med. Imaging, IEEE Trans."},{"key":"10.1016\/j.media.2015.05.005_bib0041","series-title":"MRBrainS 2013 - MICCAI Grand Challenge on MR Brain Segmentation 2013","article-title":"ASeTs: MAP-based brain tissue segmentation using manifold learning and hierarchical max-flow regularization","author":"Rajchl","year":"2014"},{"key":"10.1016\/j.media.2015.05.005_bib0042","article-title":"RANCOR: non-linear image registration with total variation regularization","author":"Rajchl","year":"2014","journal-title":"arXiv preprint arXiv:1404.2571"},{"issue":"1","key":"10.1016\/j.media.2015.05.005_bib0043","doi-asserted-by":"crossref","first-page":"159","DOI":"10.1109\/TMI.2013.2282932","article-title":"Interactive hierarchical max-flow segmentation of scar tissue from late-enhancement cardiac MR images","volume":"33","author":"Rajchl","year":"2014","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.media.2015.05.005_bib0044","series-title":"Medical Image Computing and Computer-Assisted Intervention\u2013MICCAI 2012","first-page":"659","article-title":"A fast convex optimization approach to segmenting 3D scar tissue from delayed-enhancement cardiac MR images","author":"Rajchl","year":"2012"},{"key":"10.1016\/j.media.2015.05.005_bib0045","unstructured":"RANCOR, 2014. ASETS RANCOR - registration via convex relaxation. http:\/\/www.advancedsegmentationtools.org\/. accessed:(05.19.15)."},{"issue":"2","key":"10.1016\/j.media.2015.05.005_bib0046","doi-asserted-by":"crossref","first-page":"1524","DOI":"10.1016\/j.neuroimage.2009.09.005","article-title":"A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions","volume":"49","author":"Shiee","year":"2010","journal-title":"NeuroImage"},{"key":"10.1016\/j.media.2015.05.005_bib0047","series-title":"Medical Image Computing and Computer-Assisted Intervention\u2013MICCAI 2006","first-page":"831","article-title":"Integrated graph cuts for brain MRI segmentation","author":"Song","year":"2006"},{"key":"10.1016\/j.media.2015.05.005_bib0048","article-title":"N4itk: Nick\u2019s N3 ITK implementation for MRI bias field correction","author":"Tustison","year":"2009","journal-title":"Insight Journal"},{"issue":"4","key":"10.1016\/j.media.2015.05.005_bib0025","doi-asserted-by":"crossref","first-page":"708","DOI":"10.1016\/j.neuroimage.2008.07.058","article-title":"Hippocampus segmentation in MR images using atlas registration, voxel classification, and graph cuts","volume":"43","author":"van der Lijn","year":"2008","journal-title":"Neuroimage"},{"issue":"10","key":"10.1016\/j.media.2015.05.005_bib0049","doi-asserted-by":"crossref","first-page":"897","DOI":"10.1109\/42.811270","article-title":"Automated model-based tissue classification of mr images of the brain","volume":"18","author":"Van Leemput","year":"1999","journal-title":"Med. Imaging, IEEE Trans."},{"key":"10.1016\/j.media.2015.05.005_bib0050","doi-asserted-by":"crossref","first-page":"99","DOI":"10.1016\/j.neucom.2004.04.008","article-title":"Self-organizing mixture models","volume":"63","author":"Verbeek","year":"2005","journal-title":"Neurocomputing"},{"issue":"3","key":"10.1016\/j.media.2015.05.005_bib0051","doi-asserted-by":"crossref","first-page":"611","DOI":"10.1109\/TPAMI.2012.143","article-title":"Multi-atlas segmentation with joint label fusion","volume":"35","author":"Wang","year":"2013","journal-title":"Pattern Anal. Mach. Intell., IEEE Trans."},{"key":"10.1016\/j.media.2015.05.005_bib0052","series-title":"Medical Image Computing and Computer-Assisted Intervention\u2013MICCAI 2008","first-page":"67","article-title":"A discriminative model-constrained graph cuts approach to fully automated pediatric brain tumor segmentation in 3-D MRI","author":"Wels","year":"2008"},{"issue":"1","key":"10.1016\/j.media.2015.05.005_bib0053","doi-asserted-by":"crossref","first-page":"109","DOI":"10.1016\/j.neuroimage.2010.04.006","article-title":"Measurement of hippocampal atrophy using 4D graph-cut segmentation: application to ADNI","volume":"52","author":"Wolz","year":"2010","journal-title":"NeuroImage"},{"issue":"2","key":"10.1016\/j.media.2015.05.005_bib0054","doi-asserted-by":"crossref","first-page":"405","DOI":"10.1109\/72.914534","article-title":"Self-organizing mixture networks for probability density estimation","volume":"12","author":"Yin","year":"2001","journal-title":"Neural Netw. IEEE Trans."},{"key":"10.1016\/j.media.2015.05.005_bib0055","series-title":"Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on","first-page":"2217","article-title":"A study on continuous max-flow and min-cut approaches","author":"Yuan","year":"2010"},{"key":"10.1016\/j.media.2015.05.005_bib0056","series-title":"Computer Vision\u2013ECCV 2010","first-page":"379","article-title":"A continuous max-flow approach to potts model","author":"Yuan","year":"2010"},{"issue":"1","key":"10.1016\/j.media.2015.05.005_bib0057","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1109\/42.906424","article-title":"Segmentation of brain MR images through a hidden markov random field model and the expectation-maximization algorithm","volume":"20","author":"Zhang","year":"2001","journal-title":"Med. Imaging, IEEE Trans."}],"container-title":["Medical Image Analysis"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1361841515000729?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1361841515000729?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,6,9]],"date-time":"2024-06-09T08:06:06Z","timestamp":1717920366000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1361841515000729"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2016,1]]},"references-count":57,"alternative-id":["S1361841515000729"],"URL":"https:\/\/doi.org\/10.1016\/j.media.2015.05.005","relation":{},"ISSN":["1361-8415"],"issn-type":[{"value":"1361-8415","type":"print"}],"subject":[],"published":{"date-parts":[[2016,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Hierarchical max-flow segmentation framework for multi-atlas segmentation with Kohonen self-organizing map based Gaussian mixture modeling","name":"articletitle","label":"Article Title"},{"value":"Medical Image Analysis","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.media.2015.05.005","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"Copyright \u00a9 2015 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}