{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,12,31]],"date-time":"2024-12-31T05:15:07Z","timestamp":1735622107236,"version":"3.32.0"},"reference-count":45,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Mathematics and Computers in Simulation"],"published-print":{"date-parts":[[2025,4]]},"DOI":"10.1016\/j.matcom.2024.11.012","type":"journal-article","created":{"date-parts":[[2024,11,22]],"date-time":"2024-11-22T15:56:46Z","timestamp":1732291006000},"page":"241-255","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["Maximum likelihood LM identification based on particle filtering for scarce measurement-data MIMO Hammerstein Box-Jenkins systems"],"prefix":"10.1016","volume":"230","author":[{"ORCID":"https:\/\/orcid.org\/0000-0003-2865-923X","authenticated-orcid":false,"given":"Tiancheng","family":"Zong","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-4864-0897","authenticated-orcid":false,"given":"Junhong","family":"Li","sequence":"additional","affiliation":[]},{"given":"Guoping","family":"Lu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.matcom.2024.11.012_b1","doi-asserted-by":"crossref","first-page":"288","DOI":"10.1016\/j.matcom.2022.12.031","article-title":"Time-delay Hammerstein system identification using modified cross-correlation method and variable stacking length multi-error algorithm","volume":"207","author":"Jing","year":"2023","journal-title":"Math. Comput. Simulation"},{"key":"10.1016\/j.matcom.2024.11.012_b2","doi-asserted-by":"crossref","first-page":"207","DOI":"10.1016\/j.matcom.2023.01.015","article-title":"Least squares estimations for approximate fractional vasicek model driven by a semimartingale","volume":"208","author":"Wang","year":"2023","journal-title":"Math. Comput. Simulation"},{"key":"10.1016\/j.matcom.2024.11.012_b3","doi-asserted-by":"crossref","first-page":"48","DOI":"10.1016\/j.matcom.2020.04.028","article-title":"Exploiting dynamic modeling, parameter identification, and power electronics to implement a non-dissipative Li-ion battery hardware emulator","volume":"183","author":"Luna","year":"2021","journal-title":"Math. Comput. Simulation"},{"key":"10.1016\/j.matcom.2024.11.012_b4","doi-asserted-by":"crossref","DOI":"10.1109\/TIM.2023.3290297","article-title":"Design of software-based optimal signals for system identification","volume":"72","author":"Sarker","year":"2023","journal-title":"IEEE Trans. Instrum. Meas."},{"issue":"8","key":"10.1016\/j.matcom.2024.11.012_b5","doi-asserted-by":"crossref","first-page":"1646","DOI":"10.1016\/j.automatica.2011.05.007","article-title":"Parameter estimation with scarce measurements","volume":"47","author":"Ding","year":"2011","journal-title":"Automatica"},{"issue":"9","key":"10.1016\/j.matcom.2024.11.012_b6","doi-asserted-by":"crossref","first-page":"1230","DOI":"10.1049\/cth2.12118","article-title":"Iterative parameter estimation methods for dual-rate sampled-data bilinear systems by means of the data filtering technique","volume":"15","author":"Li","year":"2021","journal-title":"IET Control Theory Appl."},{"issue":"6","key":"10.1016\/j.matcom.2024.11.012_b7","doi-asserted-by":"crossref","first-page":"2876","DOI":"10.1109\/TII.2017.2702754","article-title":"Robust global identification and output estimation for lpv dual-rate systems subjected to random output time-delays","volume":"13","author":"Yang","year":"2017","journal-title":"IEEE Trans. Ind. Inform."},{"issue":"1","key":"10.1016\/j.matcom.2024.11.012_b8","doi-asserted-by":"crossref","first-page":"220","DOI":"10.1016\/j.jeconom.2022.04.003","article-title":"A condition for the identification of multivariate models with binary instruments","volume":"235","author":"Gunsilius","year":"2023","journal-title":"J. Econometr."},{"key":"10.1016\/j.matcom.2024.11.012_b9","doi-asserted-by":"crossref","DOI":"10.1016\/j.cam.2023.115687","article-title":"Auxiliary model-based hierarchical stochastic gradient methods for multiple-input multiple-output systems","volume":"442","author":"Xing","year":"2024","journal-title":"J. Comput. Appl. Math."},{"issue":"11","key":"10.1016\/j.matcom.2024.11.012_b10","doi-asserted-by":"crossref","first-page":"5237","DOI":"10.1109\/TAC.2020.3035634","article-title":"A local direct method for module identification in dynamic networks with correlated noise","volume":"66","author":"Ramaswamy","year":"2021","journal-title":"IEEE Trans. Automat. Control"},{"key":"10.1016\/j.matcom.2024.11.012_b11","doi-asserted-by":"crossref","first-page":"571","DOI":"10.1016\/j.apm.2023.10.038","article-title":"A novel recursive multivariate nonlinear time-series modeling method by using the coupling identification concept","volume":"127","author":"Zhou","year":"2024","journal-title":"Appl. Math. Model."},{"key":"10.1016\/j.matcom.2024.11.012_b12","article-title":"Parameter identification of dual-rate Hammerstein\u2013Volterra nonlinear systems by the hybrid particle swarm-gradient algorithm based on the auxiliary model","volume":"117","author":"Zong","year":"2022","journal-title":"Eng. Appl. Artif. Intell."},{"key":"10.1016\/j.matcom.2024.11.012_b13","doi-asserted-by":"crossref","DOI":"10.1016\/j.ins.2024.120192","article-title":"Parameter estimation of multivariable Wiener nonlinear systems by the improved particle swarm optimization and coupling identification","volume":"661","author":"Zong","year":"2024","journal-title":"Inform. Sci."},{"issue":"1","key":"10.1016\/j.matcom.2024.11.012_b14","doi-asserted-by":"crossref","first-page":"148","DOI":"10.1002\/rnc.5266","article-title":"Auxiliary model multiinnovation stochastic gradient parameter estimation methods for nonlinear sandwich systems","volume":"31","author":"Xu","year":"2021","journal-title":"Internat. J. Robust Nonlinear Control"},{"issue":"9","key":"10.1016\/j.matcom.2024.11.012_b15","doi-asserted-by":"crossref","first-page":"4262","DOI":"10.1002\/rnc.5468","article-title":"Auxiliary model-based iterative parameter estimation for a nonlinear output-error system with saturation and dead-zone nonlinearity","volume":"31","author":"Wang","year":"2021","journal-title":"Int. J. Robust Nonlinear Control"},{"issue":"3","key":"10.1016\/j.matcom.2024.11.012_b16","doi-asserted-by":"crossref","first-page":"521","DOI":"10.1002\/acs.3354","article-title":"Auxiliary model-based multi-innovation recursive identification algorithms for an input nonlinear controlled autoregressive moving average system with variable-gain nonlinearity","volume":"36","author":"Fan","year":"2022","journal-title":"Internat. J. Adapt. Control Signal Process."},{"key":"10.1016\/j.matcom.2024.11.012_b17","doi-asserted-by":"crossref","DOI":"10.1016\/j.arcontrol.2024.100942","article-title":"Recursive identification methods for general stochastic systems with colored noises by using the hierarchical identification principle and the filtering identification idea","volume":"57","author":"Ding","year":"2024","journal-title":"Annu. Rev. Control"},{"issue":"11","key":"10.1016\/j.matcom.2024.11.012_b18","doi-asserted-by":"crossref","first-page":"4425","DOI":"10.1016\/j.jfranklin.2017.04.003","article-title":"Gradient iterative algorithm for dual-rate nonlinear systems based on a novel particle filter","volume":"354","author":"Chen","year":"2017","journal-title":"J. Franklin Inst."},{"issue":"7","key":"10.1016\/j.matcom.2024.11.012_b19","doi-asserted-by":"crossref","first-page":"2239","DOI":"10.1007\/s12555-021-0448-7","article-title":"Particle filtering-based iterative identification methods for a class of nonlinear systems with interval-varying measurements","volume":"20","author":"Li","year":"2022","journal-title":"Int. J. Control Autom. Syst."},{"issue":"10","key":"10.1016\/j.matcom.2024.11.012_b20","doi-asserted-by":"crossref","first-page":"5521","DOI":"10.1016\/j.jfranklin.2019.04.027","article-title":"Particle filtering based parameter estimation for systems with output-error type model structures","volume":"356","author":"Ding","year":"2019","journal-title":"J. Franklin Inst."},{"key":"10.1016\/j.matcom.2024.11.012_b21","doi-asserted-by":"crossref","first-page":"131","DOI":"10.1016\/j.automatica.2017.01.016","article-title":"Errors-in-variables identification using maximum likelihood estimation in the frequency domain","volume":"79","author":"S\u00f6derstr\u00f6m","year":"2017","journal-title":"Automatica"},{"issue":"8","key":"10.1016\/j.matcom.2024.11.012_b22","doi-asserted-by":"crossref","first-page":"3510","DOI":"10.1109\/TNNLS.2020.3015200","article-title":"Stability analysis of the modified Levenberg\u2013Marquardt algorithm for the artificial neural network training","volume":"32","author":"Rubio","year":"2021","journal-title":"IEEE Trans. Neural Netw. Learn."},{"key":"10.1016\/j.matcom.2024.11.012_b23","doi-asserted-by":"crossref","first-page":"105","DOI":"10.1016\/j.apm.2021.10.032","article-title":"A new adaptive identification framework for nonlinear multi-input multi-output systems under colored noise","volume":"103","author":"Li","year":"2022","journal-title":"Appl. Math. Model."},{"key":"10.1016\/j.matcom.2024.11.012_b24","doi-asserted-by":"crossref","DOI":"10.1016\/j.cam.2023.115724","article-title":"Convergence analysis of a synchronous gradient estimation scheme for time-varying parameter systems","volume":"443","author":"Xu","year":"2024","journal-title":"J. Comput. Appl. Math."},{"key":"10.1016\/j.matcom.2024.11.012_b25","doi-asserted-by":"crossref","DOI":"10.1016\/j.measurement.2022.111951","article-title":"Parameter identification of fractional order Hammerstein model with two-stage piecewise nonlinearity based on iterative algorithms","volume":"203","author":"Rui","year":"2022","journal-title":"Measurement"},{"issue":"6","key":"10.1016\/j.matcom.2024.11.012_b26","doi-asserted-by":"crossref","first-page":"3718","DOI":"10.1007\/s00034-024-02627-z","article-title":"Adaptive multi-innovation gradient identification algorithms for a controlled autoregressive autoregressive moving average model","volume":"43","author":"Xu","year":"2024","journal-title":"Circuits Systems Signal Process."},{"issue":"12","key":"10.1016\/j.matcom.2024.11.012_b27","doi-asserted-by":"crossref","first-page":"6770","DOI":"10.1109\/TAC.2021.3132262","article-title":"Multidirection gradient iterative algorithm: A unified framework for gradient iterative and least squares algorithms","volume":"67","author":"Chen","year":"2022","journal-title":"IEEE Trans. Automat. Control"},{"key":"10.1016\/j.matcom.2024.11.012_b28","doi-asserted-by":"crossref","first-page":"337","DOI":"10.1016\/j.isatra.2024.01.035","article-title":"Joint iterative state and parameter estimation for bilinear systems with autoregressive noises via the data filtering","volume":"147","author":"Liu","year":"2024","journal-title":"ISA Trans."},{"key":"10.1016\/j.matcom.2024.11.012_b29","doi-asserted-by":"crossref","DOI":"10.1016\/j.automatica.2022.110832","article-title":"Identification of ARMA models with binary-valued observations","volume":"149","author":"Wang","year":"2023","journal-title":"Automatica"},{"key":"10.1016\/j.matcom.2024.11.012_b30","doi-asserted-by":"crossref","DOI":"10.1016\/j.automatica.2020.109034","article-title":"Modified Kalman filtering based multi-step-length gradient iterative algorithm for ARX models with random missing outputs","volume":"118","author":"Chen","year":"2020","journal-title":"Automatica"},{"key":"10.1016\/j.matcom.2024.11.012_b31","doi-asserted-by":"crossref","first-page":"369","DOI":"10.1016\/j.sigpro.2014.03.031","article-title":"State filtering and parameter estimation for state space systems with scarce measurements","volume":"104","author":"Ding","year":"2014","journal-title":"Signal Process."},{"issue":"1","key":"10.1016\/j.matcom.2024.11.012_b32","doi-asserted-by":"crossref","first-page":"255","DOI":"10.1002\/acs.3699","article-title":"Decomposition and composition modeling algorithms for control systems with colored noises","volume":"38","author":"Xu","year":"2024","journal-title":"Internat. J. Adapt. Control Signal Process."},{"key":"10.1016\/j.matcom.2024.11.012_b33","doi-asserted-by":"crossref","DOI":"10.1016\/j.jprocont.2023.103007","article-title":"An identification algorithm of generalized time-varying systems based on the Taylor series expansion and applied to a pH process","volume":"128","author":"Ji","year":"2023","journal-title":"J. Process Control"},{"issue":"9","key":"10.1016\/j.matcom.2024.11.012_b34","doi-asserted-by":"crossref","first-page":"5534","DOI":"10.1002\/rnc.6101","article-title":"Overall recursive least squares and overall stochastic gradient algorithms and their convergence for feedback nonlinear controlled autoregressive systems","volume":"32","author":"Wei","year":"2022","journal-title":"Internat. J. Robust Nonlinear Control"},{"issue":"7","key":"10.1016\/j.matcom.2024.11.012_b35","doi-asserted-by":"crossref","first-page":"1650","DOI":"10.1002\/acs.3593","article-title":"Joint two-stage multi-innovation recursive least squares parameter and fractional-order estimation algorithm for the fractional-order input nonlinear output-error autoregressive model","volume":"37","author":"Hu","year":"2023","journal-title":"Internat. J. Adapt. Control Signal Process."},{"issue":"2","key":"10.1016\/j.matcom.2024.11.012_b36","doi-asserted-by":"crossref","first-page":"1120","DOI":"10.1002\/rnc.7014","article-title":"Hierarchical gradient- and least squares-based iterative estimation algorithms for input-nonlinear output-error systems by using the over-parameterization","volume":"34","author":"Ding","year":"2024","journal-title":"Internat. J. Robust Nonlinear Control"},{"issue":"8","key":"10.1016\/j.matcom.2024.11.012_b37","first-page":"3960","article-title":"Online parameter optimization scheme for the kernel function-based mixture models disturbed by colored noises","volume":"7","author":"Li","year":"2024","journal-title":"IEEE Trans. Circuits Syst. II Express Briefs"},{"issue":"1","key":"10.1016\/j.matcom.2024.11.012_b38","first-page":"206","article-title":"Filtering-based accelerated estimation approach for generalized time-varying systems with disturbances and colored noises","volume":"70","author":"Ji","year":"2023","journal-title":"IEEE Trans. Circuits Syst. II Express Briefs"},{"issue":"7","key":"10.1016\/j.matcom.2024.11.012_b39","doi-asserted-by":"crossref","first-page":"1528","DOI":"10.1109\/TNSRE.2020.2996963","article-title":"Bayesian state estimation in sensorimotor systems with particle filtering","volume":"28","author":"Guang","year":"2020","journal-title":"IEEE Trans. Neural Syst. Rehabil."},{"issue":"4","key":"10.1016\/j.matcom.2024.11.012_b40","doi-asserted-by":"crossref","first-page":"1363","DOI":"10.1002\/acs.3753","article-title":"Filtered generalized iterative parameter identification for equation-error autoregressive models based on the filtering identification idea","volume":"38","author":"Ding","year":"2024","journal-title":"Internat. J. Adapt. Control Signal Process."},{"key":"10.1016\/j.matcom.2024.11.012_b41","doi-asserted-by":"crossref","DOI":"10.1016\/j.sysconle.2024.105774","article-title":"Novel parameter estimation method for the systems with colored noises by using the filtering identification idea","volume":"186","author":"Xu","year":"2024","journal-title":"Systems Control Lett."},{"key":"10.1016\/j.matcom.2024.11.012_b42","doi-asserted-by":"crossref","DOI":"10.1016\/j.chaos.2024.115181","article-title":"Online identification methods for a class of Hammerstein nonlinear systems using the adaptive particle filtering","volume":"186","author":"Xu","year":"2024","journal-title":"Chaos Solitons Fractals"},{"key":"10.1016\/j.matcom.2024.11.012_b43","doi-asserted-by":"crossref","DOI":"10.1016\/j.engappai.2021.104470","article-title":"Auxiliary model-based multi-innovation PSO identification for Wiener\u2013Hammerstein systems with scarce measurements","volume":"106","author":"Zong","year":"2021","journal-title":"Eng. Appl. Artif. Intell."},{"key":"10.1016\/j.matcom.2024.11.012_b44","doi-asserted-by":"crossref","DOI":"10.1016\/j.sysconle.2024.105762","article-title":"Highly-efficient filtered hierarchical identification algorithms for multiple-input multiple-output systems with colored noises","volume":"186","author":"Xing","year":"2024","journal-title":"Systems Control Lett."},{"issue":"8","key":"10.1016\/j.matcom.2024.11.012_b45","doi-asserted-by":"crossref","first-page":"1089","DOI":"10.1049\/iet-cta.2019.0419","article-title":"Maximum likelihood identification of dual-rate Hammerstein output error moving average system","volume":"14","author":"Li","year":"2020","journal-title":"IET Control Theory Appl."}],"container-title":["Mathematics and Computers in Simulation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0378475424004531?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0378475424004531?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,12,30]],"date-time":"2024-12-30T15:34:52Z","timestamp":1735572892000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0378475424004531"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2025,4]]},"references-count":45,"alternative-id":["S0378475424004531"],"URL":"https:\/\/doi.org\/10.1016\/j.matcom.2024.11.012","relation":{},"ISSN":["0378-4754"],"issn-type":[{"type":"print","value":"0378-4754"}],"subject":[],"published":{"date-parts":[[2025,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Maximum likelihood LM identification based on particle filtering for scarce measurement-data MIMO Hammerstein Box-Jenkins systems","name":"articletitle","label":"Article Title"},{"value":"Mathematics and Computers in Simulation","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.matcom.2024.11.012","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}]}}