{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,12,31]],"date-time":"2024-12-31T05:15:08Z","timestamp":1735622108640,"version":"3.32.0"},"reference-count":41,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Mathematics and Computers in Simulation"],"published-print":{"date-parts":[[2025,4]]},"DOI":"10.1016\/j.matcom.2024.11.006","type":"journal-article","created":{"date-parts":[[2024,11,13]],"date-time":"2024-11-13T07:21:56Z","timestamp":1731482516000},"page":"94-110","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["Finite-time synchronization analysis for the generalized Caputo fractional spatio-temporal neural networks"],"prefix":"10.1016","volume":"230","author":[{"given":"Xianghu","family":"Liu","sequence":"first","affiliation":[]},{"given":"Yanfang","family":"Li","sequence":"additional","affiliation":[]},{"given":"Guangjun","family":"Xu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"1\u20132","key":"10.1016\/j.matcom.2024.11.006_b1","first-page":"1","article-title":"Hybrid projective synchronization of fractional-order memristor-based neural networks with time delays","volume":"11","author":"Velmurugan","year":"2015","journal-title":"Nonlinear Dynam."},{"key":"10.1016\/j.matcom.2024.11.006_b2","doi-asserted-by":"crossref","first-page":"105","DOI":"10.1016\/j.jde.2021.01.034","article-title":"Existence of a traveling wave solution in a free interface problem with fractional order kinetics","volume":"281","author":"Brauner","year":"2021","journal-title":"J. Differential Equations"},{"key":"10.1016\/j.matcom.2024.11.006_b3","first-page":"217","article-title":"On some functional transformations","volume":"10","author":"Erd\u00e9lyi","year":"1940","journal-title":"Rend. Semin. Mat. Univ. Politec. Torino Rend. Sem. Math."},{"key":"10.1016\/j.matcom.2024.11.006_b4","doi-asserted-by":"crossref","first-page":"685","DOI":"10.4153\/CJM-1962-058-6","article-title":"Fractional integration and dual integral equations","volume":"14","author":"Erd\u00e9lyi","year":"1962","journal-title":"Canad. J. Math."},{"key":"10.1016\/j.matcom.2024.11.006_b5","series-title":"Fractional Calculus and Its Applications(Proc. Internat. Conf. Univ. New Haven, West Haven, Conn. 1974), 37-79","article-title":"The use in mathematical physics of Erd\u00e9lyi-Kober operators and of some of their generalizations","volume":"vol. 457","author":"Naismith","year":"1975"},{"key":"10.1016\/j.matcom.2024.11.006_b6","first-page":"1","article-title":"Operators of fractional integration and their applications","volume":"118","author":"Srivastava","year":"2001","journal-title":"Appl. Math. Comput."},{"issue":"6","key":"10.1016\/j.matcom.2024.11.006_b7","article-title":"Fractional differential equations with dependence on the Caputo-Katugampola derivative","volume":"11","author":"Almeida","year":"2016","journal-title":"J. Comput. Nonlinear Dyn."},{"key":"10.1016\/j.matcom.2024.11.006_b8","first-page":"1","article-title":"Chaos analysis and asymptotic stability of generalized caputo fractional differential equations","author":"Baleanu","year":"2017","journal-title":"Chaos Solitons Fractals"},{"key":"10.1016\/j.matcom.2024.11.006_b9","doi-asserted-by":"crossref","first-page":"2294","DOI":"10.3390\/sym13122294","article-title":"A survey of some recent developments on higher transcendental functions of analytic number theory and applied mathematics","volume":"13","author":"Srivastava","year":"2021","journal-title":"Symmetry"},{"key":"10.1016\/j.matcom.2024.11.006_b10","first-page":"1501","article-title":"Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformations","volume":"22","author":"Srivastava","year":"2021","journal-title":"J. Nonlinear Convex Anal."},{"key":"10.1016\/j.matcom.2024.11.006_b11","doi-asserted-by":"crossref","first-page":"135","DOI":"10.55579\/jaec.202153.340","article-title":"An introductory overview of fractional-calculus operators based upon the Fox-Wright and related higher transcendental functions","volume":"5","author":"Srivastava","year":"2021","journal-title":"J. Adv. Eng. Comput."},{"issue":"5","key":"10.1016\/j.matcom.2024.11.006_b12","doi-asserted-by":"crossref","first-page":"1382","DOI":"10.1002\/num.21948","article-title":"Preconditioned iterative methods for fractional diffusion models in finance","volume":"31","author":"Meng","year":"2015","journal-title":"Numer. Methods Partial Differential Equations"},{"key":"10.1016\/j.matcom.2024.11.006_b13","doi-asserted-by":"crossref","first-page":"245","DOI":"10.1016\/j.neunet.2012.02.030","article-title":"Nonlinear dynamics and chaos in fractional-order neural networks","author":"Kaslik","year":"2012","journal-title":"Neural Netw."},{"key":"10.1016\/j.matcom.2024.11.006_b14","doi-asserted-by":"crossref","first-page":"86","DOI":"10.1016\/j.neucom.2017.03.042","article-title":"Finite-time stability analysis of fractional-order complex-valued memristor-based neural networks with both leakage and time-varying delays","volume":"245","author":"Wang","year":"2017","journal-title":"Neurocomputing"},{"issue":"2","key":"10.1016\/j.matcom.2024.11.006_b15","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s11063-017-9604-8","article-title":"Finite-time stability of fractional-order complex-valued neural networks with time delays","volume":"46","author":"Ding","year":"2017","journal-title":"Neural Process. Lett."},{"key":"10.1016\/j.matcom.2024.11.006_b16","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.neunet.2013.11.016","article-title":"Global Mittag-Leffler stability and synchronization of memristor-based fractional-order neural networks","volume":"51","author":"Chen","year":"2014","journal-title":"Neural Netw."},{"key":"10.1016\/j.matcom.2024.11.006_b17","first-page":"1","article-title":"Asymptotical stability and asymptotic periodicity for the Lasota-Wazewska model of fractional order with infinite delays","author":"Qu","year":"2019","journal-title":"Quaest. Math."},{"key":"10.1016\/j.matcom.2024.11.006_b18","doi-asserted-by":"crossref","first-page":"549","DOI":"10.1007\/s00521-015-1876-1","article-title":"Finite-time stability criteria for a class of fractional-order neural networks with delay","volume":"27","author":"Chen","year":"2016","journal-title":"Neural Comput. Appl."},{"key":"10.1016\/j.matcom.2024.11.006_b19","doi-asserted-by":"crossref","DOI":"10.1109\/TNNLS.2020.3015952","article-title":"Unified analysis on the global dissipativity and stability of fractional-order multidimension-valued memristive neural networks with time delay","author":"Xiao","year":"2021","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.matcom.2024.11.006_b20","doi-asserted-by":"crossref","DOI":"10.1016\/j.cnsns.2021.105708","article-title":"Chaos synchronization in generalized lorenz systems and an application to image encryption","volume":"96","author":"Moon","year":"2021","journal-title":"Commun. Nonlinear Sci. Numer. Simul."},{"issue":"4","key":"10.1016\/j.matcom.2024.11.006_b21","doi-asserted-by":"crossref","first-page":"1211","DOI":"10.1109\/TNNLS.2019.2919560","article-title":"Projective synchronization of delayed neural networks with mismatched parameters and impulsive effects","volume":"31","author":"Kumar","year":"2020","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"5","key":"10.1016\/j.matcom.2024.11.006_b22","doi-asserted-by":"crossref","first-page":"2279","DOI":"10.1109\/TNNLS.2020.2995718","article-title":"Mittag-Leffler synchronization of delayed fractional memristor neural networks via adaptive control","volume":"32","author":"Kao","year":"2021","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.matcom.2024.11.006_b23","doi-asserted-by":"crossref","first-page":"491","DOI":"10.1016\/j.neunet.2022.07.031","article-title":"Extended analysis on the global Mittag-Leffler synchronization problem for fractional-order octonion-valued BAM neural networks","volume":"154","author":"Xiao","year":"2022","journal-title":"Neural Netw."},{"issue":"11","key":"10.1016\/j.matcom.2024.11.006_b24","doi-asserted-by":"crossref","first-page":"4665","DOI":"10.1016\/j.jfranklin.2018.04.026","article-title":"Finite-time and fixed-time synchronization of discontinuous complex networks: a unified control framework design","volume":"355","author":"Ji","year":"2018","journal-title":"J. Franklin Inst."},{"key":"10.1016\/j.matcom.2024.11.006_b25","doi-asserted-by":"crossref","first-page":"3657","DOI":"10.1016\/j.jfranklin.2016.06.029","article-title":"Synchronization for fractional-order time-delayed memristor-based neural networks with parameter uncertainty","volume":"353","author":"Gu","year":"2016","journal-title":"J. Franklin Inst."},{"key":"10.1016\/j.matcom.2024.11.006_b26","doi-asserted-by":"crossref","first-page":"205","DOI":"10.1016\/j.neucom.2017.01.014","article-title":"Quasi-uniform synchronization of fractional-order memristor-based neural networks with delay","volume":"234","author":"Yang","year":"2017","journal-title":"Neurocomputing"},{"key":"10.1016\/j.matcom.2024.11.006_b27","doi-asserted-by":"crossref","first-page":"87","DOI":"10.1016\/j.neunet.2013.10.002","article-title":"Projective synchronization for fractional neural networks","volume":"49","author":"Yu","year":"2014","journal-title":"Neural Netw."},{"key":"10.1016\/j.matcom.2024.11.006_b28","doi-asserted-by":"crossref","first-page":"152","DOI":"10.1016\/j.neunet.2015.02.007","article-title":"Corrigendum to projective synchronization for fractional neural networks","volume":"67","author":"Yu","year":"2015","journal-title":"Neural Netw."},{"key":"10.1016\/j.matcom.2024.11.006_b29","first-page":"1350","article-title":"Synchronization and adaptive control of an array of linearly coupled reaction\u2013diffusion neural networks with hybrid coupling","volume":"44","author":"Wang","year":"2013","journal-title":"IEEE Trans. Syst. Man Cybern."},{"key":"10.1016\/j.matcom.2024.11.006_b30","doi-asserted-by":"crossref","first-page":"1109","DOI":"10.1109\/TSMC.2015.2476491","article-title":"Pinning control for synchronization of coupled reaction\u2013diffusion neural networks with directed topologies","volume":"46","author":"Wang","year":"2016","journal-title":"IEEE Trans. Syst. Man Cybern."},{"key":"10.1016\/j.matcom.2024.11.006_b31","doi-asserted-by":"crossref","first-page":"22","DOI":"10.1016\/j.neunet.2017.08.009","article-title":"Mittag-Leffler synchronization of fractional neural networks with time-varying delays and reaction\u2013diffusion terms using impulsive and linear controllers","volume":"96","author":"Stamova","year":"2017","journal-title":"Neural Netw."},{"key":"10.1016\/j.matcom.2024.11.006_b32","doi-asserted-by":"crossref","first-page":"3167","DOI":"10.1016\/j.jfranklin.2021.02.003","article-title":"Exponential synchronization of fractional-order reaction diffusion coupled neural networks with hybrid delay-dependent impulses","volume":"358","author":"Yang","year":"2021","journal-title":"J. Franklin Inst."},{"key":"10.1016\/j.matcom.2024.11.006_b33","doi-asserted-by":"crossref","first-page":"226","DOI":"10.1016\/j.neucom.2021.01.128","article-title":"Synchronization analysis for delayed spatio-temporal neural networks with fractional-order","volume":"441","author":"Zheng","year":"2021","journal-title":"Neurocomputing"},{"key":"10.1016\/j.matcom.2024.11.006_b34","doi-asserted-by":"crossref","DOI":"10.1016\/j.physa.2019.122027","article-title":"Finite-time synchronization and parameter identification of uncertain fractional-order complex networks","volume":"533","author":"Li","year":"2019","journal-title":"Phys. A"},{"issue":"17","key":"10.1016\/j.matcom.2024.11.006_b35","doi-asserted-by":"crossref","first-page":"284","DOI":"10.1016\/j.neucom.2018.08.003","article-title":"Finite-time synchronization of fractional-order memristive recurrent neural networks with discontinuous activation functions","volume":"316","author":"Li","year":"2018","journal-title":"Neurocomputing"},{"key":"10.1016\/j.matcom.2024.11.006_b36","doi-asserted-by":"crossref","first-page":"1748","DOI":"10.1049\/iet-cta.2017.1144","article-title":"Asymptotical stability of fractional order systems with time delay via an integral inequality","volume":"12","author":"He","year":"2018","journal-title":"IET Control Theory Appl."},{"key":"10.1016\/j.matcom.2024.11.006_b37","first-page":"1","article-title":"Robust finite-time stabilization of fractional-order neural networks with discontinuous and continuous activation functions under uncertainty","author":"Ding","year":"2017","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.matcom.2024.11.006_b38","article-title":"Synchronization of fractional-order reaction\u2013diffusion neural networks via mixed boundary control","author":"Sun","year":"2023","journal-title":"Appl. Math. Comput."},{"key":"10.1016\/j.matcom.2024.11.006_b39","doi-asserted-by":"crossref","DOI":"10.1016\/j.neucom.2023.126703","article-title":"Event-triggered impulsive control for synchronization in finite time of fractional-order reaction\u2013diffusion complex networks","volume":"557","author":"Xing","year":"2023","journal-title":"Neurocomputing"},{"key":"10.1016\/j.matcom.2024.11.006_b40","doi-asserted-by":"crossref","DOI":"10.1016\/j.cnsns.2023.107303","article-title":"Synchronization of fractional-order delayed neural networks with reaction\u2013diffusion terms: Distributed delayed impulsive control","volume":"124","author":"Liu","year":"2023","journal-title":"Commun. Nonlinear Sci. Numer. Simul."},{"key":"10.1016\/j.matcom.2024.11.006_b41","doi-asserted-by":"crossref","DOI":"10.1016\/j.cnsns.2023.107696","article-title":"Synchronization of fractional-order delayed coupled networks with reaction\u2013diffusion terms and Neumann boundary value conditions","volume":"129","author":"Zhang","year":"2024","journal-title":"Commun. Nonlinear Sci. Numer. Simul."}],"container-title":["Mathematics and Computers in Simulation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0378475424004476?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0378475424004476?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,12,30]],"date-time":"2024-12-30T15:34:39Z","timestamp":1735572879000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0378475424004476"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2025,4]]},"references-count":41,"alternative-id":["S0378475424004476"],"URL":"https:\/\/doi.org\/10.1016\/j.matcom.2024.11.006","relation":{},"ISSN":["0378-4754"],"issn-type":[{"type":"print","value":"0378-4754"}],"subject":[],"published":{"date-parts":[[2025,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Finite-time synchronization analysis for the generalized Caputo fractional spatio-temporal neural networks","name":"articletitle","label":"Article Title"},{"value":"Mathematics and Computers in Simulation","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.matcom.2024.11.006","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}]}}