{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,12,31]],"date-time":"2024-12-31T05:14:51Z","timestamp":1735622091827,"version":"3.32.0"},"reference-count":35,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"}],"funder":[{"DOI":"10.13039\/501100004055","name":"King Fahd University of Petroleum & Minerals","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100004055","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Mathematics and Computers in Simulation"],"published-print":{"date-parts":[[2025,4]]},"DOI":"10.1016\/j.matcom.2024.11.002","type":"journal-article","created":{"date-parts":[[2024,11,9]],"date-time":"2024-11-09T10:10:10Z","timestamp":1731147010000},"page":"20-38","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["Efficient second-order accurate exponential time differencing for time-fractional advection\u2013diffusion\u2013reaction equations with variable coefficients"],"prefix":"10.1016","volume":"230","author":[{"ORCID":"https:\/\/orcid.org\/0000-0001-8202-4708","authenticated-orcid":false,"given":"Ibrahim O.","family":"Sarumi","sequence":"first","affiliation":[]},{"given":"Khaled M.","family":"Furati","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-8140-0545","authenticated-orcid":false,"given":"Abdul Q.M.","family":"Khaliq","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"year":"2006","author":"Kilbas","series-title":"Theory and Applications of Fractional Differential Equations","key":"10.1016\/j.matcom.2024.11.002_b1"},{"issue":"1","key":"10.1016\/j.matcom.2024.11.002_b2","doi-asserted-by":"crossref","first-page":"113","DOI":"10.1016\/S0375-6505(98)00047-9","article-title":"Diffusion of fluids in porous media with memory","volume":"28","author":"Caputo","year":"1999","journal-title":"Geothermics"},{"issue":"1","key":"10.1016\/j.matcom.2024.11.002_b3","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/S0370-1573(00)00070-3","article-title":"The random walk\u2019s guide to anomalous diffusion: A fractional dynamics approach","volume":"39","author":"Metzler","year":"2000","journal-title":"Phys. Rep."},{"issue":"10","key":"10.1016\/j.matcom.2024.11.002_b4","doi-asserted-by":"crossref","DOI":"10.1029\/2003WR002141","article-title":"Fractal mobile\/immobile solute transport","volume":"39","author":"Schumer","year":"2003","journal-title":"Water Resour. Res."},{"issue":"10","key":"10.1016\/j.matcom.2024.11.002_b5","doi-asserted-by":"crossref","first-page":"1115","DOI":"10.1080\/01630563.2021.1936019","article-title":"Numerical methods for the time fractional convection-diffusion-reaction equation","volume":"42","author":"Li","year":"2021","journal-title":"Numer. Funct. Anal. Optim."},{"key":"10.1016\/j.matcom.2024.11.002_b6","doi-asserted-by":"crossref","first-page":"549","DOI":"10.1016\/j.apnum.2022.12.013","article-title":"Analytical and numerical solutions of time-fractional advection-diffusion-reaction equation","volume":"185","author":"Maji","year":"2023","journal-title":"Appl. Numer. Math."},{"issue":"2","key":"10.1016\/j.matcom.2024.11.002_b7","doi-asserted-by":"crossref","first-page":"1057","DOI":"10.1137\/16M1082329","article-title":"Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation","volume":"55","author":"Stynes","year":"2017","journal-title":"SIAM J. Numer. Anal."},{"issue":"1","key":"10.1016\/j.matcom.2024.11.002_b8","doi-asserted-by":"crossref","first-page":"426","DOI":"10.1016\/j.jmaa.2011.04.058","article-title":"Initial value\/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems","volume":"382","author":"Sakamoto","year":"2011","journal-title":"J. Math. Anal. Appl."},{"key":"10.1016\/j.matcom.2024.11.002_b9","doi-asserted-by":"crossref","first-page":"1510","DOI":"10.1016\/j.jcp.2007.09.015","article-title":"Numerical algorithm for the time fractional Fokker\u2013Planck equation","volume":"227","author":"Deng","year":"2007","journal-title":"J. Comput. Phys."},{"issue":"11","key":"10.1016\/j.matcom.2024.11.002_b10","doi-asserted-by":"crossref","first-page":"4125","DOI":"10.1016\/j.cnsns.2012.03.003","article-title":"The Sinc\u2013Legendre collocation method for a class of fractional convection\u2013diffusion equations with variable coefficients","volume":"17","author":"Saadatmandi","year":"2012","journal-title":"Commun. Nonlinear Sci. Numer. Simul."},{"key":"10.1016\/j.matcom.2024.11.002_b11","doi-asserted-by":"crossref","first-page":"424","DOI":"10.1016\/j.jcp.2014.09.031","article-title":"A new difference scheme for the time fractional diffusion equation","volume":"280","author":"Alikhanov","year":"2015","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.matcom.2024.11.002_b12","doi-asserted-by":"crossref","DOI":"10.1016\/j.cnsns.2021.106073","article-title":"Adaptive numerical solutions of time-fractional advection\u2013diffusion\u2013reaction equations","volume":"105","author":"Jannelli","year":"2022","journal-title":"Commun. Nonlinear Sci. Numer. Simul."},{"key":"10.1016\/j.matcom.2024.11.002_b13","article-title":"Second-order error analysis of the averaged L1 scheme L1\u00af for time-fractional initial-value and subdiffusion problems","author":"Shen","year":"2023","journal-title":"Sci. China Math."},{"issue":"2","key":"10.1016\/j.matcom.2024.11.002_b14","doi-asserted-by":"crossref","first-page":"1112","DOI":"10.1137\/17M1131829","article-title":"Sharp error estimate of the nonuniform L1 formula for linear reaction-subdiffusion equations","volume":"56","author":"Liao","year":"2018","journal-title":"SIAM J. Numer. Anal."},{"issue":"1","key":"10.1016\/j.matcom.2024.11.002_b15","doi-asserted-by":"crossref","first-page":"210","DOI":"10.1137\/16M1094257","article-title":"An analysis of the modified L1 scheme for time-fractional partial differential equations with nonsmooth data","volume":"56","author":"Yan","year":"2018","journal-title":"SIAM J. Numer. Anal."},{"issue":"1","key":"10.1016\/j.matcom.2024.11.002_b16","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1137\/16M1089320","article-title":"Numerical analysis of nonlinear subdiffusion equations","volume":"56","author":"Jin","year":"2018","journal-title":"SIAM J. Numer. Anal."},{"issue":"4","key":"10.1016\/j.matcom.2024.11.002_b17","doi-asserted-by":"crossref","first-page":"1173","DOI":"10.4208\/nmtma.OA-2022-0009s","article-title":"A survey of the L1 scheme in the discretisation of time-fractional problems","volume":"15","author":"Stynes","year":"2022","journal-title":"Numer. Math. Theory Methods Appl."},{"issue":"23","key":"10.1016\/j.matcom.2024.11.002_b18","article-title":"Generalized exponential time differencing schemes for stiff fractional systems with nonsmooth source term","volume":"86","author":"Sarumi","year":"2021","journal-title":"J. Sci. Comput."},{"key":"10.1016\/j.matcom.2024.11.002_b19","doi-asserted-by":"crossref","first-page":"876","DOI":"10.1016\/j.camwa.2011.04.054","article-title":"Generalized exponential time differencing methods for fractional order problems","volume":"62","author":"Garrappa","year":"2011","journal-title":"Comput. Math. Appl."},{"issue":"8","key":"10.1016\/j.matcom.2024.11.002_b20","doi-asserted-by":"crossref","first-page":"1915","DOI":"10.1140\/epjst\/e2013-01973-1","article-title":"Exponential integrators for time-fractional partial differential equations","volume":"222","author":"Garrappa","year":"2013","journal-title":"Eur. Phys. J. Spec. Top."},{"issue":"2","key":"10.1016\/j.matcom.2024.11.002_b21","doi-asserted-by":"crossref","first-page":"1261","DOI":"10.1007\/s11075-022-01339-2","article-title":"Efficient high-order exponential time differencing methods for nonlinear fractional differential models","volume":"92","author":"Sarumi","year":"2023","journal-title":"Numer. Algorithms"},{"issue":"4","key":"10.1016\/j.matcom.2024.11.002_b22","doi-asserted-by":"crossref","first-page":"2115","DOI":"10.1093\/imanum\/drac031","article-title":"A second-order accurate numerical scheme for a time-fractional Fokker\u2013Planck equation","volume":"43","author":"Mustapha","year":"2022","journal-title":"IMA J. Numer. Anal."},{"issue":"5","key":"10.1016\/j.matcom.2024.11.002_b23","doi-asserted-by":"crossref","first-page":"A3070","DOI":"10.1137\/16M1070323","article-title":"Implicit-explicit difference schemes for nonlinear fractional differential equations with nonsmooth solutions","volume":"38","author":"Cao","year":"2016","journal-title":"SIAM J. Sci. Comput."},{"issue":"46","key":"10.1016\/j.matcom.2024.11.002_b24","article-title":"Highly accurate global pad\u00e9 approximations of generalized Mittag\u2013Leffler function and its inverse","volume":"82","author":"Sarumi","year":"2020","journal-title":"J. Sci. Comput."},{"year":"2007","author":"LeVeque","series-title":"Finite Difference Methods for Ordinary and Partial Differential Equations","key":"10.1016\/j.matcom.2024.11.002_b25"},{"key":"10.1016\/j.matcom.2024.11.002_b26","first-page":"733","article-title":"Some notes on properties of the matrix Mittag-Leffler function","volume":"338","author":"Sadeghi","year":"2018","journal-title":"Appl. Math. Comput."},{"issue":"1","key":"10.1016\/j.matcom.2024.11.002_b27","doi-asserted-by":"crossref","first-page":"129","DOI":"10.1007\/s10915-018-0699-5","article-title":"Computing the matrix Mittag-Leffler function with applications to fractional calculus","volume":"77","author":"Garrappa","year":"2018","journal-title":"J. Sci. Comput."},{"issue":"3","key":"10.1016\/j.matcom.2024.11.002_b28","doi-asserted-by":"crossref","first-page":"481","DOI":"10.1007\/s00211-006-0045-y","article-title":"A second-order accurate numerical method for a fractional wave equation","volume":"105","author":"McLean","year":"2007","journal-title":"Numer. Math."},{"year":"2016","author":"Burden","series-title":"Numerical Analysis","key":"10.1016\/j.matcom.2024.11.002_b29"},{"year":"2008","author":"Higham","series-title":"Functions of Matrices: Theory and Computation","key":"10.1016\/j.matcom.2024.11.002_b30"},{"issue":"2","key":"10.1016\/j.matcom.2024.11.002_b31","doi-asserted-by":"crossref","first-page":"A798","DOI":"10.1137\/23M1548463","article-title":"An efficient block rational krylov solver for sylvester equations with adaptive pole selection","volume":"46","author":"Casulli","year":"2024","journal-title":"SIAM J. Sci. Comput."},{"issue":"2","key":"10.1016\/j.matcom.2024.11.002_b32","doi-asserted-by":"crossref","first-page":"751","DOI":"10.1007\/s10543-015-0575-8","article-title":"Matrix-equation-based strategies for convection\u2013diffusion equations","volume":"56","author":"Palitta","year":"2016","journal-title":"BIT Numer. Math."},{"key":"10.1016\/j.matcom.2024.11.002_b33","doi-asserted-by":"crossref","first-page":"849","DOI":"10.13001\/1081-3810.1479","article-title":"Consistency and efficient solution of the Sylvester equation for *-congruence","volume":"22","author":"de Teran","year":"2011","journal-title":"Electron. J. Linear Algebra"},{"key":"10.1016\/j.matcom.2024.11.002_b34","doi-asserted-by":"crossref","first-page":"181","DOI":"10.1016\/j.camwa.2021.05.027","article-title":"A computationally efficient strategy for time-fractional diffusion-reaction equations","volume":"116","author":"Garrappa","year":"2022","journal-title":"Comput. Math. Appl."},{"issue":"3","key":"10.1016\/j.matcom.2024.11.002_b35","doi-asserted-by":"crossref","first-page":"1350","DOI":"10.1137\/140971191","article-title":"Numerical evalution of two and three parameter Mittag-Leffler functions","volume":"53","author":"Garrappa","year":"2015","journal-title":"SIAM J. Numer. Anal."}],"container-title":["Mathematics and Computers in Simulation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0378475424004439?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0378475424004439?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,12,30]],"date-time":"2024-12-30T15:34:28Z","timestamp":1735572868000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0378475424004439"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2025,4]]},"references-count":35,"alternative-id":["S0378475424004439"],"URL":"https:\/\/doi.org\/10.1016\/j.matcom.2024.11.002","relation":{},"ISSN":["0378-4754"],"issn-type":[{"type":"print","value":"0378-4754"}],"subject":[],"published":{"date-parts":[[2025,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Efficient second-order accurate exponential time differencing for time-fractional advection\u2013diffusion\u2013reaction equations with variable coefficients","name":"articletitle","label":"Article Title"},{"value":"Mathematics and Computers in Simulation","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.matcom.2024.11.002","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}]}}