{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,19]],"date-time":"2024-10-19T14:40:26Z","timestamp":1729348826637,"version":"3.27.0"},"reference-count":21,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2025,2,1]],"date-time":"2025-02-01T00:00:00Z","timestamp":1738368000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2025,2,1]],"date-time":"2025-02-01T00:00:00Z","timestamp":1738368000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Mathematics and Computers in Simulation"],"published-print":{"date-parts":[[2025,2]]},"DOI":"10.1016\/j.matcom.2024.09.002","type":"journal-article","created":{"date-parts":[[2024,9,6]],"date-time":"2024-09-06T14:06:31Z","timestamp":1725631591000},"page":"202-210","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["A quadrature method for Volterra integral equations with highly oscillatory Bessel kernel"],"prefix":"10.1016","volume":"228","author":[{"given":"Longbin","family":"Zhao","sequence":"first","affiliation":[]},{"given":"Pengde","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Qiongqi","family":"Fan","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.matcom.2024.09.002_b1","doi-asserted-by":"crossref","first-page":"1167","DOI":"10.1137\/S0036142901395321","article-title":"Stability and convergence of collocation schemes for retarded potential integral equations","volume":"42","author":"Davies","year":"2004","journal-title":"SIAM J. Numer. Anal."},{"key":"10.1016\/j.matcom.2024.09.002_b2","doi-asserted-by":"crossref","first-page":"87","DOI":"10.1090\/S0025-5718-1983-0701626-6","article-title":"Runge-Kutta theory for Volterra and Abel integral equations of the second kind","volume":"41","author":"Lubich","year":"1983","journal-title":"Math. Comp."},{"key":"10.1016\/j.matcom.2024.09.002_b3","doi-asserted-by":"crossref","first-page":"63","DOI":"10.1007\/s11464-009-0008-6","article-title":"Stability of Runge-Kutta-Pouzet methods for Volterra integro-differential equations with delays","volume":"4","author":"Huang","year":"2009","journal-title":"Front. Math. China"},{"year":"2004","author":"Brunner","article-title":"Collocation methods for Volterra integral and related functional differential equations","series-title":"Volume 15 of Cambridge Monographs on Applied and Computational Mathematics","key":"10.1016\/j.matcom.2024.09.002_b4"},{"key":"10.1016\/j.matcom.2024.09.002_b5","doi-asserted-by":"crossref","first-page":"1339","DOI":"10.1007\/s10543-016-0609-x","article-title":"On the convergence of collocation solutions in continuous piecewise polynomial spaces for Volterra integral equations","volume":"56","author":"Liang","year":"2016","journal-title":"BIT"},{"key":"10.1016\/j.matcom.2024.09.002_b6","doi-asserted-by":"crossref","first-page":"1110","DOI":"10.1007\/s10915-015-0121-5","article-title":"Legendre spectral collocation methods for Volterra delay-integro-differential equations","volume":"67","author":"Zhao","year":"2016","journal-title":"J. Sci. Comput."},{"key":"10.1016\/j.matcom.2024.09.002_b7","doi-asserted-by":"crossref","first-page":"829","DOI":"10.1090\/S0025-5718-09-02279-0","article-title":"Fast integration of highly oscillatory integrals with exotic oscillators","volume":"79","author":"Xiang","year":"2010","journal-title":"Math. Comp."},{"key":"10.1016\/j.matcom.2024.09.002_b8","doi-asserted-by":"crossref","first-page":"1281","DOI":"10.1093\/imanum\/drq035","article-title":"Clenshaw-Curtis-Filon-type methods for highly oscillatory Bessel transforms and applications","volume":"31","author":"Xiang","year":"2011","journal-title":"IMA J. Numer. Anal."},{"key":"10.1016\/j.matcom.2024.09.002_b9","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1016\/0377-0427(94)00118-9","article-title":"Fast integration of rapidly oscillatory functions","volume":"67","author":"Levin","year":"1996","journal-title":"J. Comput. Appl. Math."},{"key":"10.1016\/j.matcom.2024.09.002_b10","doi-asserted-by":"crossref","first-page":"85","DOI":"10.1016\/S0168-9274(99)00033-1","article-title":"A method to generate generalized quadrature rules for oscillatory integrals","volume":"34","author":"Chung","year":"2000","journal-title":"Appl. Numer. Math."},{"key":"10.1016\/j.matcom.2024.09.002_b11","first-page":"1383","article-title":"Efficient quadrature of highly oscillatory integrals using derivatives","volume":"461","author":"Iserles","year":"2005","journal-title":"Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci."},{"key":"10.1016\/j.matcom.2024.09.002_b12","doi-asserted-by":"crossref","first-page":"753","DOI":"10.1007\/s11075-016-0219-3","article-title":"An adaptive Filon-type method for oscillatory integrals without stationary points","volume":"75","author":"Zhao","year":"2017","journal-title":"Numer. Algorithms"},{"key":"10.1016\/j.matcom.2024.09.002_b13","doi-asserted-by":"crossref","first-page":"469","DOI":"10.1093\/imanum\/drp048","article-title":"Asymptotic expansion and Filon-type methods for a Volterra integral equation with a highly oscillatory kernel","volume":"31","author":"Wang","year":"2011","journal-title":"IMA J. Numer. Anal."},{"key":"10.1016\/j.matcom.2024.09.002_b14","doi-asserted-by":"crossref","first-page":"2696","DOI":"10.1016\/j.cam.2012.01.007","article-title":"A rapid solution of a kind of 1D Fredholm oscillatory integral equation","volume":"236","author":"Li","year":"2012","journal-title":"J. Comput. Appl. Math."},{"key":"10.1016\/j.matcom.2024.09.002_b15","doi-asserted-by":"crossref","first-page":"241","DOI":"10.1007\/s10543-012-0399-8","article-title":"Efficient methods for Volterra integral equations with highly oscillatory Bessel kernels","volume":"53","author":"Xiang","year":"2013","journal-title":"BIT"},{"key":"10.1016\/j.matcom.2024.09.002_b16","first-page":"783","article-title":"On Filon methods for a class of Volterra integral equations with highly oscillatory Bessel kernels","volume":"268","author":"Fang","year":"2015","journal-title":"Appl. Math. Comput."},{"key":"10.1016\/j.matcom.2024.09.002_b17","doi-asserted-by":"crossref","first-page":"168","DOI":"10.3390\/sym11020168","article-title":"Hermite-type collocation methods to solve volterra integral equations with highly oscillatory Bessel kernels","volume":"11","author":"Fang","year":"2019","journal-title":"Symmetry"},{"key":"10.1016\/j.matcom.2024.09.002_b18","doi-asserted-by":"crossref","first-page":"137","DOI":"10.1016\/j.matcom.2022.01.015","article-title":"Error estimates of piecewise Hermite collocation method for highly oscillatory Volterra integral equation with Bessel kernel","volume":"196","author":"Zhao","year":"2022","journal-title":"Math. Comput. Simulation"},{"key":"10.1016\/j.matcom.2024.09.002_b19","first-page":"60","article-title":"On generalized quadrature rules for fast oscillatory integrals","volume":"197","author":"Xiang","year":"2008","journal-title":"Appl. Math. Comput."},{"key":"10.1016\/j.matcom.2024.09.002_b20","doi-asserted-by":"crossref","first-page":"633","DOI":"10.1007\/s00211-006-0051-0","article-title":"Efficient Filon-type methods for \u222babf(x)ei\u03c9g(x)dx","volume":"105","author":"Xiang","year":"2007","journal-title":"Numer. Math."},{"year":"1993","author":"Stein","series-title":"Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals","key":"10.1016\/j.matcom.2024.09.002_b21"}],"container-title":["Mathematics and Computers in Simulation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0378475424003483?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0378475424003483?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,10,19]],"date-time":"2024-10-19T14:17:57Z","timestamp":1729347477000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0378475424003483"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2025,2]]},"references-count":21,"alternative-id":["S0378475424003483"],"URL":"https:\/\/doi.org\/10.1016\/j.matcom.2024.09.002","relation":{},"ISSN":["0378-4754"],"issn-type":[{"type":"print","value":"0378-4754"}],"subject":[],"published":{"date-parts":[[2025,2]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A quadrature method for Volterra integral equations with highly oscillatory Bessel kernel","name":"articletitle","label":"Article Title"},{"value":"Mathematics and Computers in Simulation","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.matcom.2024.09.002","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}]}}