{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,21]],"date-time":"2024-09-21T19:10:09Z","timestamp":1726945809843},"reference-count":82,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Mathematics and Computers in Simulation"],"published-print":{"date-parts":[[2024,11]]},"DOI":"10.1016\/j.matcom.2024.06.009","type":"journal-article","created":{"date-parts":[[2024,6,12]],"date-time":"2024-06-12T20:38:44Z","timestamp":1718224724000},"page":"716-730","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":1,"special_numbering":"C","title":["Solving a class of Thomas\u2013Fermi equations: A new solution concept based on physics-informed machine learning"],"prefix":"10.1016","volume":"225","author":[{"given":"Maryam","family":"Babaei","sequence":"first","affiliation":[]},{"given":"Alireza","family":"Afzal Aghaei","sequence":"additional","affiliation":[]},{"given":"Zahra","family":"Kazemi","sequence":"additional","affiliation":[]},{"given":"Mahdieh","family":"Jamshidi","sequence":"additional","affiliation":[]},{"given":"Reza","family":"Ghaderi","sequence":"additional","affiliation":[]},{"given":"Kourosh","family":"Parand","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"year":"2011","series-title":"Spectral Methods: Algorithms, Analysis and Applications","author":"Shen","key":"10.1016\/j.matcom.2024.06.009_b1"},{"year":"2005","series-title":"Numerical Solution of Partial Differential Equations: An Introduction","author":"Morton","key":"10.1016\/j.matcom.2024.06.009_b2"},{"year":"2023","series-title":"Hyperparameter optimization of orthogonal functions in the numerical solution of differential equations","author":"Aghaei","key":"10.1016\/j.matcom.2024.06.009_b3"},{"key":"10.1016\/j.matcom.2024.06.009_b4","doi-asserted-by":"crossref","first-page":"624","DOI":"10.1016\/j.cam.2016.11.035","article-title":"Accurate solution of the Thomas-Fermi equation using the fractional order of rational Chebyshev functions","volume":"317","author":"Parand","year":"2017","journal-title":"J. Comput. Appl. Math."},{"issue":"1\u20134","key":"10.1016\/j.matcom.2024.06.009_b5","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1080\/00036819008839903","article-title":"Existence of solutions for nonlinear singular boundary value problems","volume":"35","author":"Bobisud","year":"1990","journal-title":"Appl. Anal."},{"issue":"3","key":"10.1016\/j.matcom.2024.06.009_b6","doi-asserted-by":"crossref","first-page":"591","DOI":"10.1090\/qam\/910465","article-title":"A constructive solution for a generalized Thomas-Fermi theory of ionized atoms","volume":"45","author":"Chan","year":"1987","journal-title":"Quart. Appl. Math."},{"issue":"10","key":"10.1016\/j.matcom.2024.06.009_b7","doi-asserted-by":"crossref","first-page":"1561","DOI":"10.1103\/PhysRev.75.1561","article-title":"Equations of state of elements based on the generalized Fermi-Thomas theory","volume":"75","author":"Feynman","year":"1949","journal-title":"Phys. Rev."},{"issue":"7","key":"10.1016\/j.matcom.2024.06.009_b8","doi-asserted-by":"crossref","first-page":"559","DOI":"10.1103\/PhysRev.47.559","article-title":"The Thomas-Fermi method for metals","volume":"47","author":"Slater","year":"1935","journal-title":"Phys. Rev."},{"issue":"1","key":"10.1016\/j.matcom.2024.06.009_b9","doi-asserted-by":"crossref","first-page":"73","DOI":"10.1007\/BF01351576","article-title":"Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente","volume":"48","author":"Fermi","year":"1928","journal-title":"Z. Phys."},{"key":"10.1016\/j.matcom.2024.06.009_b10","series-title":"Machine Learning in Radiation Oncology","first-page":"3","article-title":"What is machine learning?","author":"Naqa","year":"2015"},{"key":"10.1016\/j.matcom.2024.06.009_b11","unstructured":"Amir Hossein Karami, Sepehr Rezaee, Elmira Mirzabeigi, Kourosh Parand, Comparison of pre-training and classification models for early detection of Alzheimer\u2019s disease using magnetic resonance imaging, in: 8th International Conference on Combinatorics Cryptography, Computer Science and Computation, 2023."},{"issue":"9","key":"10.1016\/j.matcom.2024.06.009_b12","doi-asserted-by":"crossref","first-page":"1356","DOI":"10.1109\/TNNLS.2012.2202126","article-title":"Approximate solutions to ordinary differential equations using least squares support vector machines","volume":"23","author":"Mehrkanoon","year":"2012","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.matcom.2024.06.009_b13","doi-asserted-by":"crossref","first-page":"105","DOI":"10.1016\/j.neucom.2015.02.013","article-title":"Learning solutions to partial differential equations using LS-SVM","volume":"159","author":"Mehrkanoon","year":"2015","journal-title":"Neurocomputing"},{"year":"2023","series-title":"Learning with Fractional Orthogonal Kernel Classifiers in Support Vector Machines: Theory, Algorithms and Applications","author":"Rad","key":"10.1016\/j.matcom.2024.06.009_b14"},{"issue":"8","key":"10.1016\/j.matcom.2024.06.009_b15","doi-asserted-by":"crossref","first-page":"1025","DOI":"10.1002\/nme.2540","article-title":"Reduced-order modeling of parameterized PDEs using time\u2013space-parameter principal component analysis","volume":"80","author":"Audouze","year":"2009","journal-title":"Internat. J. Numer. Methods Engrg."},{"key":"10.1016\/j.matcom.2024.06.009_b16","doi-asserted-by":"crossref","first-page":"186","DOI":"10.1016\/j.camwa.2020.08.012","article-title":"A machine-learning minimal-residual (ML-MRes) framework for goal-oriented finite element discretizations","volume":"95","author":"Brevis","year":"2021","journal-title":"Comput. Math. Appl."},{"key":"10.1016\/j.matcom.2024.06.009_b17","doi-asserted-by":"crossref","first-page":"686","DOI":"10.1016\/j.jcp.2018.10.045","article-title":"Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations","volume":"378","author":"Raissi","year":"2019","journal-title":"J. Comput. Phys.","ISSN":"http:\/\/id.crossref.org\/issn\/0021-9991","issn-type":"print"},{"issue":"4","key":"10.1016\/j.matcom.2024.06.009_b18","doi-asserted-by":"crossref","first-page":"821","DOI":"10.1109\/TNN.2005.851786","article-title":"Constructive feedforward neural networks using Hermite polynomial activation functions","volume":"16","author":"Liying","year":"2005","journal-title":"IEEE Trans. Neural Netw."},{"key":"10.1016\/j.matcom.2024.06.009_b19","series-title":"Artificial Intelligence Applications and Innovations: 12th IFIP WG 12.5 International Conference and Workshops, AIAI 2016, Thessaloniki, Greece, September 16-18, 2016, Proceedings 12","first-page":"167","article-title":"Modeling beach rotation using a novel Legendre polynomial feedforward neural network trained by nonlinear constrained optimization","author":"Rigos","year":"2016"},{"year":"2022","series-title":"JDNN: Jacobi deep neural network for solving telegraph equation","author":"Babaei","key":"10.1016\/j.matcom.2024.06.009_b20"},{"key":"10.1016\/j.matcom.2024.06.009_b21","doi-asserted-by":"crossref","DOI":"10.1016\/j.asoc.2023.110936","article-title":"Bridging machine learning and weighted residual methods for delay differential equations of fractional order","volume":"149","author":"Taheri","year":"2023","journal-title":"Appl. Soft Comput."},{"issue":"4","key":"10.1016\/j.matcom.2024.06.009_b22","doi-asserted-by":"crossref","first-page":"630","DOI":"10.1103\/PhysRev.36.630","article-title":"The application of the Fermi-Thomas statistical model to the calculation of potential distribution in positive ions","volume":"36","author":"Baker","year":"1930","journal-title":"Phys. Rev."},{"issue":"10","key":"10.1016\/j.matcom.2024.06.009_b23","doi-asserted-by":"crossref","first-page":"1898","DOI":"10.1103\/PhysRev.38.1898","article-title":"Thomas-Fermi equation solution by the differential analyzer","volume":"38","author":"Bush","year":"1931","journal-title":"Phys. Rev."},{"year":"1934","series-title":"Teoremi e metodi per l\u2019integrazione numerica della equazione differenziale di Fermi: Estratto: No 7","author":"Miranda","key":"10.1016\/j.matcom.2024.06.009_b24"},{"issue":"9","key":"10.1016\/j.matcom.2024.06.009_b25","doi-asserted-by":"crossref","first-page":"759","DOI":"10.1143\/JPSJ.10.759","article-title":"Accurate value of the initial slope of the ordinary TF function","volume":"10","author":"Kobayashi","year":"1955","journal-title":"J. Phys. Soc. Japan"},{"issue":"3","key":"10.1016\/j.matcom.2024.06.009_b26","doi-asserted-by":"crossref","first-page":"357","DOI":"10.1088\/0370-1328\/84\/3\/304","article-title":"Rational approximations to the ordinary Thomas-Fermi function and its derivative","volume":"84","author":"Mason","year":"1964","journal-title":"Proc. Phys. Soc. (1958-1967)"},{"issue":"10","key":"10.1016\/j.matcom.2024.06.009_b27","doi-asserted-by":"crossref","first-page":"2535","DOI":"10.1063\/1.528998","article-title":"An analytic solution to the Thomas\u2013Fermi equation","volume":"31","author":"Laurenzi","year":"1990","journal-title":"J. Math. Phys."},{"issue":"3","key":"10.1016\/j.matcom.2024.06.009_b28","doi-asserted-by":"crossref","first-page":"389","DOI":"10.1016\/0010-4655(92)90047-3","article-title":"Chebyshev series solution of the Thomas-Fermi equation","volume":"67","author":"MacLeod","year":"1992","journal-title":"Comput. Phys. Commun."},{"issue":"1","key":"10.1016\/j.matcom.2024.06.009_b29","first-page":"11","article-title":"The modified decomposition method and Pad\u00e9 approximants for solving the Thomas-Fermi equation","volume":"105","author":"Wazwaz","year":"1999","journal-title":"Appl. Math. Comput."},{"issue":"1","key":"10.1016\/j.matcom.2024.06.009_b30","doi-asserted-by":"crossref","first-page":"280","DOI":"10.1103\/PhysRevA.60.280","article-title":"Pad\u00e9 approximant approach to the Thomas-Fermi problem","volume":"60","author":"Epele","year":"1999","journal-title":"Phys. Rev. A"},{"issue":"8","key":"10.1016\/j.matcom.2024.06.009_b31","doi-asserted-by":"crossref","first-page":"852","DOI":"10.1119\/1.1484144","article-title":"Majorana solution of the Thomas-Fermi equation","volume":"70","author":"Esposito","year":"2002","journal-title":"Am. J. Phys."},{"issue":"2\u20133","key":"10.1016\/j.matcom.2024.06.009_b32","first-page":"495","article-title":"An explicit analytic solution to the Thomas\u2013Fermi equation","volume":"144","author":"Liao","year":"2003","journal-title":"Appl. Math. Comput."},{"issue":"1\u20132","key":"10.1016\/j.matcom.2024.06.009_b33","doi-asserted-by":"crossref","first-page":"111","DOI":"10.1016\/j.physleta.2006.12.064","article-title":"Series solution to the Thomas-Fermi equation","volume":"365","author":"Khan","year":"2007","journal-title":"Phys. Lett. A"},{"issue":"4","key":"10.1016\/j.matcom.2024.06.009_b34","doi-asserted-by":"crossref","first-page":"905","DOI":"10.12693\/APhysPolA.114.913","article-title":"Analytic approximations for Thomas-Fermi equation","volume":"114","author":"El-Nahhas","year":"2008","journal-title":"Acta Phys. Pol. A"},{"issue":"1","key":"10.1016\/j.matcom.2024.06.009_b35","first-page":"396","article-title":"A series solution to the Thomas-Fermi equation","volume":"203","author":"Yao","year":"2008","journal-title":"Appl. Math. Comput."},{"issue":"2","key":"10.1016\/j.matcom.2024.06.009_b36","doi-asserted-by":"crossref","first-page":"210","DOI":"10.1016\/j.physleta.2008.10.044","article-title":"Rational Chebyshev pseudospectral approach for solving Thomas-Fermi equation","volume":"373","author":"Parand","year":"2009","journal-title":"Phys. Lett. A"},{"issue":"3","key":"10.1016\/j.matcom.2024.06.009_b37","doi-asserted-by":"crossref","first-page":"891","DOI":"10.2478\/s11534-010-0059-z","article-title":"An optimal iteration method with application to the Thomas-Fermi equation","volume":"9","author":"Marinca","year":"2011","journal-title":"Open Phys."},{"issue":"2","key":"10.1016\/j.matcom.2024.06.009_b38","first-page":"303","article-title":"Variation and series approach to the Thomas-Fermi equation","volume":"218","author":"Oulne","year":"2011","journal-title":"Appl. Math. Comput."},{"issue":"5","key":"10.1016\/j.matcom.2024.06.009_b39","first-page":"2178","article-title":"Analytic continuation of Taylor series and the boundary value problems of some nonlinear ordinary differential equations","volume":"218","author":"Abbasbandy","year":"2011","journal-title":"Appl. Math. Comput."},{"issue":"13","key":"10.1016\/j.matcom.2024.06.009_b40","first-page":"6433","article-title":"Rational approximation to the Thomas\u2013Fermi equations","volume":"217","author":"Fern\u00e1ndez","year":"2011","journal-title":"Appl. Math. Comput."},{"issue":"3","key":"10.1016\/j.matcom.2024.06.009_b41","doi-asserted-by":"crossref","first-page":"359","DOI":"10.1007\/s11075-011-9494-1","article-title":"An adaptive algorithm for the Thomas-Fermi equation","volume":"59","author":"Zhu","year":"2012","journal-title":"Numer. Algorithms"},{"issue":"11","key":"10.1016\/j.matcom.2024.06.009_b42","doi-asserted-by":"crossref","first-page":"4097","DOI":"10.1016\/j.cnsns.2012.01.030","article-title":"Solution of the Thomas-Fermi equation with a convergent approach","volume":"17","author":"Turkyilmazoglu","year":"2012","journal-title":"Commun. Nonlinear Sci. Numer. Simul."},{"issue":"17","key":"10.1016\/j.matcom.2024.06.009_b43","first-page":"8363","article-title":"The improved homotopy analysis method for the Thomas-Fermi equation","volume":"218","author":"Zhao","year":"2012","journal-title":"Appl. Math. Comput."},{"key":"10.1016\/j.matcom.2024.06.009_b44","doi-asserted-by":"crossref","first-page":"90","DOI":"10.1016\/j.cam.2012.11.015","article-title":"Rational Chebyshev series for the Thomas-Fermi function: Endpoint singularities and spectral methods","volume":"244","author":"Boyd","year":"2013","journal-title":"J. Comput. Appl. Math."},{"issue":"7","key":"10.1016\/j.matcom.2024.06.009_b45","doi-asserted-by":"crossref","first-page":"503","DOI":"10.2478\/s11534-014-0472-9","article-title":"Analytical approximate solutions to the Thomas-Fermi equation","volume":"12","author":"Marinca","year":"2014","journal-title":"Open Phys."},{"key":"10.1016\/j.matcom.2024.06.009_b46","doi-asserted-by":"crossref","first-page":"79","DOI":"10.1016\/j.cam.2013.07.050","article-title":"On the rational second kind Chebyshev pseudospectral method for the solution of the Thomas\u2013Fermi equation over an infinite interval","volume":"257","author":"K\u0131l\u0131\u00e7man","year":"2014","journal-title":"J. Comput. Appl. Math."},{"key":"10.1016\/j.matcom.2024.06.009_b47","doi-asserted-by":"crossref","DOI":"10.1155\/2014\/168568","article-title":"Spectral method for solving the nonlinear thomas-fermi equation based on exponential functions","volume":"2014","author":"Jovanovic","year":"2014","journal-title":"J. Appl. Math."},{"issue":"5","key":"10.1016\/j.matcom.2024.06.009_b48","doi-asserted-by":"crossref","first-page":"1083","DOI":"10.12693\/APhysPolA.125.1083","article-title":"An explicit analytic solution to the Thomas-Fermi equation by the improved differential transform method","volume":"125","author":"Fatoorehchi","year":"2014","journal-title":"Acta Phys. Pol. A"},{"key":"10.1016\/j.matcom.2024.06.009_b49","doi-asserted-by":"crossref","first-page":"251","DOI":"10.1016\/j.cam.2015.01.004","article-title":"Laguerre pseudospectral approximation to the Thomas\u2013Fermi equation","volume":"282","author":"Liu","year":"2015","journal-title":"J. Comput. Appl. Math."},{"year":"2016","series-title":"Using hermite function for solving Thomas-Fermi equation","author":"Bayatbabolghani","key":"10.1016\/j.matcom.2024.06.009_b50"},{"key":"10.1016\/j.matcom.2024.06.009_b51","doi-asserted-by":"crossref","first-page":"251","DOI":"10.1016\/j.cam.2015.01.004","article-title":"Laguerre pseudospectral approximation to the Thomas\u2013Fermi equation","volume":"282","author":"Liu","year":"2015","journal-title":"J. Comput. Appl. Math."},{"year":"2016","series-title":"A new approach for solving nonlinear Thomas-Fermi equation based on fractional order of rational Bessel functions","author":"Parand","key":"10.1016\/j.matcom.2024.06.009_b52"},{"issue":"7","key":"10.1016\/j.matcom.2024.06.009_b53","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1140\/epjp\/i2016-16228-x","article-title":"A novel numerical technique to obtain an accurate solution to the Thomas-Fermi equation","volume":"131","author":"Parand","year":"2016","journal-title":"Eur. Phys. J. Plus"},{"key":"10.1016\/j.matcom.2024.06.009_b54","doi-asserted-by":"crossref","first-page":"186","DOI":"10.1016\/j.apnum.2018.08.016","article-title":"Revisiting the Thomas\u2013Fermi equation: Accelerating rational Chebyshev series through coordinate transformations","volume":"135","author":"Zhang","year":"2019","journal-title":"Appl. Numer. Math."},{"issue":"1","key":"10.1016\/j.matcom.2024.06.009_b55","doi-asserted-by":"crossref","first-page":"009","DOI":"10.1088\/0253-6102\/71\/1\/9","article-title":"A Computationally Hybrid Method for Solving a Famous Physical Problem on an Unbounded Domain","volume":"71","author":"Parand","year":"2019","journal-title":"Commun. Theor. Phys. (Beijing)"},{"issue":"2","key":"10.1016\/j.matcom.2024.06.009_b56","doi-asserted-by":"crossref","first-page":"68","DOI":"10.1007\/s40819-022-01280-x","article-title":"An efficient method for solving the generalized Thomas\u2013Fermi and Lane\u2013Emden\u2013Fowler type equations with nonlocal integral type boundary conditions","volume":"8","author":"Singh","year":"2022","journal-title":"Int. J. Appl. Comput. Math."},{"issue":"4","key":"10.1016\/j.matcom.2024.06.009_b57","doi-asserted-by":"crossref","first-page":"2925","DOI":"10.1007\/s00366-021-01309-7","article-title":"Laguerre wavelet method for solving Thomas\u2013Fermi type equations","volume":"38","author":"Shahni","year":"2022","journal-title":"Eng. Comput."},{"key":"10.1016\/j.matcom.2024.06.009_b58","doi-asserted-by":"crossref","first-page":"123","DOI":"10.1016\/j.matcom.2020.02.004","article-title":"Haar wavelet quasilinearization method for numerical solution of Emden\u2013Fowler type equations","volume":"174","author":"Singh","year":"2020","journal-title":"Math. Comput. Simulation"},{"issue":"4","key":"10.1016\/j.matcom.2024.06.009_b59","doi-asserted-by":"crossref","first-page":"2853","DOI":"10.1007\/s00366-020-00972-6","article-title":"Numerical solution of singular boundary value problems using advanced adomian decomposition method","volume":"37","author":"Kumar","year":"2021","journal-title":"Eng. Comput."},{"key":"10.1016\/j.matcom.2024.06.009_b60","doi-asserted-by":"crossref","DOI":"10.1016\/j.cam.2023.115701","article-title":"Numerical solution and error analysis of the Thomas\u2013Fermi type equations with integral boundary conditions by the modified collocation techniques","volume":"441","author":"Shahni","year":"2024","journal-title":"J. Comput. Appl. Math."},{"issue":"1","key":"10.1016\/j.matcom.2024.06.009_b61","doi-asserted-by":"crossref","DOI":"10.3952\/physics.v52i1.2270","article-title":"Thomas-Fermi and Poisson modeling of gate electrostatics in graphene nanoribbon","volume":"52","author":"Andrijauskas","year":"2012","journal-title":"Lith. J. Phys."},{"key":"10.1016\/j.matcom.2024.06.009_b62","article-title":"Finite element schemes for Fermi equation","volume":"vol. 1863","author":"Asadzadeh","year":"2017"},{"issue":"2","key":"10.1016\/j.matcom.2024.06.009_b63","doi-asserted-by":"crossref","first-page":"308","DOI":"10.1016\/0021-9991(82)90083-3","article-title":"Numerical integration of the Thomas-Fermi equation from zero to infinity","volume":"47","author":"Krutter","year":"1982","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.matcom.2024.06.009_b64","first-page":"204","article-title":"A. Note on the Thomas-Fermi Equation","volume":"61","author":"A.S.","year":"1981","journal-title":"Akad.-Verlag-Berlin"},{"key":"10.1016\/j.matcom.2024.06.009_b65","unstructured":"S.M. Wong, Y.C. Hon, Numerical approximations for Thomas-Fermi model using radial basis functions, in: Proceedings of the 4th International Conference on Dynamic Systems and Applications, 2003, pp. 175\u2013182."},{"key":"10.1016\/j.matcom.2024.06.009_b66","series-title":"Algorithms for Approximation","first-page":"269","article-title":"Approximation on an infinite range to ordinary differential equations solutions by a function of a radial basis function","author":"Jenkinson","year":"2007"},{"issue":"1","key":"10.1016\/j.matcom.2024.06.009_b67","first-page":"1","article-title":"A new numerical approach to solve Thomas\u2013Fermi model of an atom using bio-inspired heuristics integrated with sequential quadratic programming","volume":"5","author":"Raja","year":"2016","journal-title":"SpringerPlus"},{"year":"2002","series-title":"Chebyshev Polynomials","author":"Mason","key":"10.1016\/j.matcom.2024.06.009_b68"},{"issue":"2","key":"10.1016\/j.matcom.2024.06.009_b69","doi-asserted-by":"crossref","first-page":"268","DOI":"10.1016\/S0010-4655(01)00415-5","article-title":"Quasilinearization approach to nonlinear problems in physics with application to nonlinear ODEs","volume":"141","author":"Mandelzweig","year":"2001","journal-title":"Comput. Phys. Comm."},{"issue":"1","key":"10.1016\/j.matcom.2024.06.009_b70","doi-asserted-by":"crossref","first-page":"69","DOI":"10.1016\/S0010-4655(01)00191-6","article-title":"Numerical investigation of quasilinearization method in quantum mechanics","volume":"138","author":"Krivec","year":"2001","journal-title":"Comput. Phys. Comm."},{"year":"2002","series-title":"Least Squares Support Vector Machines","author":"Suykens","key":"10.1016\/j.matcom.2024.06.009_b71"},{"year":"1998","series-title":"Learning with Kernels","author":"Smola","key":"10.1016\/j.matcom.2024.06.009_b72"},{"issue":"5","key":"10.1016\/j.matcom.2024.06.009_b73","doi-asserted-by":"crossref","first-page":"542","DOI":"10.1017\/S0305004100011683","article-title":"The calculation of atomic fields","volume":"23","author":"Thomas","year":"1927","journal-title":"Math. Proc. Cambridge Philos. Soc."},{"year":"1962","series-title":"Introduction to Nonlinear Differential and Integral Equations","author":"Davis","key":"10.1016\/j.matcom.2024.06.009_b74"},{"key":"10.1016\/j.matcom.2024.06.009_b75","series-title":"Learning with Fractional Orthogonal Kernel Classifiers in Support Vector Machines: Theory, Algorithms and Applications","first-page":"199","article-title":"Solving integral equations by ls-svr","author":"Parand","year":"2023"},{"article-title":"Quasilinearization and nonlinear boundary-value problems","year":"1965","author":"Bellman","key":"10.1016\/j.matcom.2024.06.009_b76"},{"issue":"2","key":"10.1016\/j.matcom.2024.06.009_b77","doi-asserted-by":"crossref","first-page":"268","DOI":"10.1016\/S0010-4655(01)00415-5","article-title":"Quasilinearization approach to nonlinear problems in physics with application to nonlinear ODEs","volume":"141","author":"Mandelzweig","year":"2001","journal-title":"Comput. Phys. Comm."},{"key":"10.1016\/j.matcom.2024.06.009_b78","doi-asserted-by":"crossref","DOI":"10.1140\/epjp\/s13360-019-00066-3","article-title":"A new heuristic computational solver for nonlinear singular Thomas\u2013Fermi system using evolutionary optimized cubic splines","volume":"135","author":"Ahmad","year":"2020","journal-title":"Eur. Phys. J. Plus"},{"issue":"2","key":"10.1016\/j.matcom.2024.06.009_b79","doi-asserted-by":"crossref","first-page":"449","DOI":"10.1016\/0022-5193(76)90071-0","article-title":"Oxygen diffusion in a spherical cell with nonlinear oxygen uptake kinetics","volume":"60","author":"Lin","year":"1976","journal-title":"J. Theoret. Biol."},{"issue":"2","key":"10.1016\/j.matcom.2024.06.009_b80","doi-asserted-by":"crossref","first-page":"255","DOI":"10.1016\/0022-5193(78)90270-9","article-title":"A re-examination of oxygen diffusion in a spherical cell with Michaelis-Menten oxygen uptake kinetics","volume":"71","author":"McElwain","year":"1978","journal-title":"J. Theoret. Biol."},{"key":"10.1016\/j.matcom.2024.06.009_b81","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1140\/epjp\/s13360-021-02301-2","article-title":"Analytical approximations of three-point generalized Thomas\u2013Fermi and Lane\u2013Emden\u2013Fowler type equations","volume":"137","author":"Singh","year":"2022","journal-title":"Eur. Phys. J. Plus"},{"key":"10.1016\/j.matcom.2024.06.009_b82","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s40064-016-2753-9","article-title":"An effective numerical method to solve a class of nonlinear singular boundary value problems using improved differential transform method","volume":"5","author":"Xie","year":"2016","journal-title":"SpringerPlus"}],"container-title":["Mathematics and Computers in Simulation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0378475424002209?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0378475424002209?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,9,21]],"date-time":"2024-09-21T18:57:20Z","timestamp":1726945040000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0378475424002209"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,11]]},"references-count":82,"alternative-id":["S0378475424002209"],"URL":"https:\/\/doi.org\/10.1016\/j.matcom.2024.06.009","relation":{},"ISSN":["0378-4754"],"issn-type":[{"type":"print","value":"0378-4754"}],"subject":[],"published":{"date-parts":[[2024,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Solving a class of Thomas\u2013Fermi equations: A new solution concept based on physics-informed machine learning","name":"articletitle","label":"Article Title"},{"value":"Mathematics and Computers in Simulation","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.matcom.2024.06.009","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}]}}