{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,21]],"date-time":"2024-07-21T16:29:46Z","timestamp":1721579386793},"reference-count":20,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,11,1]],"date-time":"2021-11-01T00:00:00Z","timestamp":1635724800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001824","name":"Grantov\u00e1 Agentura \u010cesk\u00e9 Republiky","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001824","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004585","name":"Vysok\u00e9 U\u010den\u00ed Technick\u00e9 v Brn\u011b","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100004585","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001823","name":"Ministerstvo \u0160kolstv\u00ed, Ml\u00e1de\u017ee a T\u011blov\u00fdchovy","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001823","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Mathematics and Computers in Simulation"],"published-print":{"date-parts":[[2021,11]]},"DOI":"10.1016\/j.matcom.2020.12.015","type":"journal-article","created":{"date-parts":[[2020,12,31]],"date-time":"2020-12-31T19:54:48Z","timestamp":1609444488000},"page":"191-206","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":5,"special_numbering":"C","title":["Dual strategies for solving the Stokes problem with stick\u2013slip boundary conditions in 3D"],"prefix":"10.1016","volume":"189","author":[{"given":"Jaroslav","family":"Haslinger","sequence":"first","affiliation":[]},{"given":"Radek","family":"Ku\u010dera","sequence":"additional","affiliation":[]},{"given":"Taoufik","family":"Sassi","sequence":"additional","affiliation":[]},{"given":"V\u00e1clav","family":"\u0160\u00e1tek","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"4","key":"10.1016\/j.matcom.2020.12.015_b1","doi-asserted-by":"crossref","first-page":"337","DOI":"10.1007\/BF02576171","article-title":"A stable finite element for the Stokes equations","volume":"22","author":"Arnold","year":"1984","journal-title":"Calcolo"},{"key":"10.1016\/j.matcom.2020.12.015_b2","series-title":"Finite Element Meshes and Assembling of Stiffness Matrices","author":"Arzt","year":"2019"},{"key":"10.1016\/j.matcom.2020.12.015_b3","doi-asserted-by":"crossref","first-page":"1413","DOI":"10.1051\/m2an\/2014001","article-title":"Error estimates for Stokes problem with Tresca friction conditions","volume":"48","author":"Ayadi","year":"2014","journal-title":"ESAIM Math. Model. Numer. Anal."},{"key":"10.1016\/j.matcom.2020.12.015_b4","doi-asserted-by":"crossref","first-page":"936","DOI":"10.1016\/j.cma.2016.03.026","article-title":"Numerical methods for the Stokes and Navier\u2013Stokes equations driven by threshold slip boundary conditions","volume":"305","author":"Djoko","year":"2016","journal-title":"Comput. Methods Appl. Mech. Engrg."},{"key":"10.1016\/j.matcom.2020.12.015_b5","series-title":"Finite Elements and Fast Iterative Solvers with Applications in Incompressible Fluid Dynamics","author":"Elman","year":"2005"},{"key":"10.1016\/j.matcom.2020.12.015_b6","first-page":"199","article-title":"A mathematical analysis of motions of viscous incompressible fluid under leak and slip boundary conditions","volume":"888","author":"Fujita","year":"1994","journal-title":"RIMS Kokyuroku"},{"key":"10.1016\/j.matcom.2020.12.015_b7","series-title":"Handbook of Numerical Analysis, Volume IV, Part 2, Vol. 4","first-page":"313","article-title":"Numerical methods for unilateral problems in solid mechanics","author":"Haslinger","year":"1996"},{"issue":"9","key":"10.1016\/j.matcom.2020.12.015_b8","doi-asserted-by":"crossref","first-page":"1049","DOI":"10.1002\/zamm.201500117","article-title":"Stokes problem with a solution dependent slip bound: Stability of solutions with respect to domains","volume":"96","author":"Haslinger","year":"2016","journal-title":"ZAMM Z. Angew. Math. Mech."},{"issue":"2","key":"10.1016\/j.matcom.2020.12.015_b9","doi-asserted-by":"crossref","first-page":"491","DOI":"10.1137\/10078299","article-title":"Obstacle problems with cohesion: A hemi-variational inequality approach and its efficient numerical solution","volume":"21","author":"Hinterm\u00fcller","year":"2011","journal-title":"SIAM J. Optim."},{"key":"10.1016\/j.matcom.2020.12.015_b10","series-title":"Iso2mesh: A 3D surface and volumetric mesh generator for MATLAB\/Octave","year":"2018"},{"issue":"2","key":"10.1016\/j.matcom.2020.12.015_b11","doi-asserted-by":"crossref","first-page":"243","DOI":"10.15388\/Informatica.2019.205","article-title":"Efficient MATLAB codes for the 2D\/3D Stokes equation with the mini-element","volume":"30","author":"Koko","year":"2019","journal-title":"Informatica"},{"issue":"2","key":"10.1016\/j.matcom.2020.12.015_b12","doi-asserted-by":"crossref","first-page":"846","DOI":"10.1137\/060670456","article-title":"Convergence rate of an optimization algorithm for minimizing quadratic functions with separable convex constraints","volume":"19","author":"Ku\u010dera","year":"2008","journal-title":"SIAM J. Optim."},{"key":"10.1016\/j.matcom.2020.12.015_b13","doi-asserted-by":"crossref","first-page":"114","DOI":"10.1016\/j.matcom.2016.05.012","article-title":"Efficient methods for solving the Stokes problem with slip boundary conditions","volume":"145","author":"Ku\u010dera","year":"2018","journal-title":"Math. Comput. Simulation"},{"issue":"6","key":"10.1016\/j.matcom.2020.12.015_b14","doi-asserted-by":"crossref","first-page":"1195","DOI":"10.1080\/10556788.2012.684352","article-title":"An interior point algorithm for the minimization arising from 3D contact problems with friction","volume":"28","author":"Ku\u010dera","year":"2013","journal-title":"Optim. Methods Softw."},{"issue":"1","key":"10.1016\/j.matcom.2020.12.015_b15","doi-asserted-by":"crossref","first-page":"65","DOI":"10.1080\/10556788.2018.1556659","article-title":"On the inexact symmetrized globally convergent semi-smooth Newton method for 3D contact problems with Tresca friction: the R-linear convergence rate","volume":"35","author":"Ku\u010dera","year":"2020","journal-title":"Optim. Methods Softw."},{"issue":"1","key":"10.1016\/j.matcom.2020.12.015_b16","doi-asserted-by":"crossref","DOI":"10.1063\/1.5043962","article-title":"The semi-smooth Newton method for solving the Stokes problem with the stick-slip boundary condition","volume":"1978","author":"Ku\u010dera","year":"2018","journal-title":"AIP Conf. Proc."},{"key":"10.1016\/j.matcom.2020.12.015_b17","first-page":"389","article-title":"Sur les lois du mouvement des fluides","volume":"6","author":"Navier","year":"1823","journal-title":"Mem. Acad. R. Sci. Inst. Fr."},{"issue":"4","key":"10.1016\/j.matcom.2020.12.015_b18","doi-asserted-by":"crossref","first-page":"1674","DOI":"10.1137\/060649513","article-title":"Adaptive barrier update strategies for nonlinear interior methods","volume":"19","author":"Nocedal","year":"2009","journal-title":"SIAM J. Optim."},{"key":"10.1016\/j.matcom.2020.12.015_b19","doi-asserted-by":"crossref","first-page":"1141","DOI":"10.1142\/S0218202505000686","article-title":"Steady Stokes flows with threshold slip boundary conditions","volume":"15","author":"Roux","year":"2005","journal-title":"Math. Models Methods Appl. Sci."},{"key":"10.1016\/j.matcom.2020.12.015_b20","series-title":"Salomon hardware overview","year":"2020"}],"container-title":["Mathematics and Computers in Simulation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0378475420304705?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0378475420304705?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,6,30]],"date-time":"2022-06-30T22:06:41Z","timestamp":1656626801000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0378475420304705"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,11]]},"references-count":20,"alternative-id":["S0378475420304705"],"URL":"https:\/\/doi.org\/10.1016\/j.matcom.2020.12.015","relation":{},"ISSN":["0378-4754"],"issn-type":[{"value":"0378-4754","type":"print"}],"subject":[],"published":{"date-parts":[[2021,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Dual strategies for solving the Stokes problem with stick\u2013slip boundary conditions in 3D","name":"articletitle","label":"Article Title"},{"value":"Mathematics and Computers in Simulation","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.matcom.2020.12.015","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}