{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,10]],"date-time":"2024-09-10T11:55:29Z","timestamp":1725969329599},"reference-count":45,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2017,3,1]],"date-time":"2017-03-01T00:00:00Z","timestamp":1488326400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Mathematics and Computers in Simulation"],"published-print":{"date-parts":[[2017,3]]},"DOI":"10.1016\/j.matcom.2016.05.008","type":"journal-article","created":{"date-parts":[[2016,6,16]],"date-time":"2016-06-16T02:17:41Z","timestamp":1466043461000},"page":"235-248","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":59,"special_numbering":"C","title":["Simulation-based optimization of radiotherapy: Agent-based modeling and reinforcement learning"],"prefix":"10.1016","volume":"133","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-2416-8177","authenticated-orcid":false,"given":"Ammar","family":"Jalalimanesh","sequence":"first","affiliation":[]},{"given":"Hamidreza","family":"Shahabi Haghighi","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9884-0830","authenticated-orcid":false,"given":"Abbas","family":"Ahmadi","sequence":"additional","affiliation":[]},{"given":"Madjid","family":"Soltani","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.matcom.2016.05.008_br000005","doi-asserted-by":"crossref","first-page":"e89380","DOI":"10.1371\/journal.pone.0089380","article-title":"Estimating dose painting effects in radiotherapy: a mathematical model","volume":"9","author":"Alfonso","year":"2014","journal-title":"PLoS One"},{"key":"10.1016\/j.matcom.2016.05.008_br000010","doi-asserted-by":"crossref","first-page":"1485","DOI":"10.1088\/0031-9155\/49\/8\/008","article-title":"A spatio-temporal simulation model of the response of solid tumours to radiotherapy in vivo: parametric validation concerning oxygen enhancement ratio and cell cycle duration","volume":"49","author":"Antipas","year":"2004","journal-title":"Phys. Med. Biol."},{"key":"10.1016\/j.matcom.2016.05.008_br000015","unstructured":"K. Basu, S. Paul, P. Roy, MRI-image based radiotherapy treatment optimization of brain tumours using stochastic approach, in: N.B.R.C. Computational Neuroscience & Neuroimaging Laboratory, Manesar (Ed.), 2005."},{"key":"10.1016\/j.matcom.2016.05.008_br000020","doi-asserted-by":"crossref","first-page":"7280","DOI":"10.1073\/pnas.082080899","article-title":"Agent-based modeling: Methods and techniques for simulating human systems","volume":"99","author":"Bonabeau","year":"2002","journal-title":"Proc. Natl. Acad. Sci."},{"key":"10.1016\/j.matcom.2016.05.008_br000025","doi-asserted-by":"crossref","first-page":"71","DOI":"10.1667\/RR3193","article-title":"Modeling and computer simulations of tumor growth and tumor response to radiotherapy","volume":"162","author":"Borkenstein","year":"2004","journal-title":"Radiat. Res."},{"key":"10.1016\/j.matcom.2016.05.008_br000030","series-title":"Optimization under uncertainty in radiation therapy","author":"Chan","year":"2007"},{"key":"10.1016\/j.matcom.2016.05.008_br000035","doi-asserted-by":"crossref","first-page":"e17933","DOI":"10.1371\/journal.pone.0017933","article-title":"Solving the puzzle of metastasis: the evolution of cell migration in neoplasms","volume":"6","author":"Chen","year":"2011","journal-title":"PLoS One"},{"key":"10.1016\/j.matcom.2016.05.008_br000040","doi-asserted-by":"crossref","DOI":"10.1155\/2014\/907171","article-title":"Agent-based modeling of the immune system: NetLogo, a promising framework","volume":"2014","author":"Chiacchio","year":"2014","journal-title":"BioMed. Res. Int."},{"key":"10.1016\/j.matcom.2016.05.008_br000045","series-title":"Optimization in Medicine","first-page":"47","article-title":"Neuro-dynamic programming for fractionated radiotherapy planning","author":"Deng","year":"2008"},{"key":"10.1016\/j.matcom.2016.05.008_br000050","doi-asserted-by":"crossref","first-page":"448","DOI":"10.1016\/j.compbiomed.2005.02.003","article-title":"A computer simulation of in vivo tumour growth and response to radiotherapy: New algorithms and parametric results","volume":"36","author":"Dionysiou","year":"2006","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.matcom.2016.05.008_br000055","doi-asserted-by":"crossref","first-page":"1121701","DOI":"10.1002\/pamm.200700362","article-title":"A model of breast carcinogenesis and recurrence after radiotherapy","volume":"7","author":"Enderling","year":"2007","journal-title":"Proc. Appl. Math. Mech."},{"key":"10.1016\/j.matcom.2016.05.008_br000060","doi-asserted-by":"crossref","first-page":"341","DOI":"10.1007\/s10441-010-9111-z","article-title":"Quantitative modeling of tumor dynamics and radiotherapy","volume":"58","author":"Enderling","year":"2010","journal-title":"Acta Biotheor."},{"key":"10.1016\/j.matcom.2016.05.008_br000065","doi-asserted-by":"crossref","first-page":"117","DOI":"10.1051\/mmnp\/20094305","article-title":"The importance of spatial distribution of stemness and proliferation state in determining tumor radioresponse","volume":"4","author":"Enderling","year":"2009","journal-title":"Math. Model. Nat. Phenom."},{"key":"10.1016\/j.matcom.2016.05.008_br000070","doi-asserted-by":"crossref","first-page":"1481","DOI":"10.1158\/0008-5472.CAN-12-3429","article-title":"Acute and fractionated irradiation differentially modulate glioma stem cell division kinetics","volume":"73","author":"Gao","year":"2013","journal-title":"Cancer Res."},{"key":"10.1016\/j.matcom.2016.05.008_br000075","first-page":"1","article-title":"Dynamic optimization in radiotherapy","author":"Ghate","year":"2011","journal-title":"Tutor. Oper. Res."},{"key":"10.1016\/j.matcom.2016.05.008_br000080","doi-asserted-by":"crossref","first-page":"545","DOI":"10.1269\/jrr.11056","article-title":"How can we overcome tumor hypoxia in radiation therapy?","volume":"52","author":"Harada","year":"2011","journal-title":"J. Radiat. Res."},{"key":"10.1016\/j.matcom.2016.05.008_br000085","doi-asserted-by":"crossref","first-page":"4775","DOI":"10.1088\/0031-9155\/52\/16\/005","article-title":"Single-cell-based computer simulation of the oxygen-dependent tumour response to irradiation","volume":"52","author":"Harting","year":"2007","journal-title":"Phys. Med. Biol."},{"key":"10.1016\/j.matcom.2016.05.008_br000090","series-title":"Cell Cycle Control: Mechanisms and Protocols","author":"Humphrey","year":"2005"},{"key":"10.1016\/j.matcom.2016.05.008_br000095","doi-asserted-by":"crossref","first-page":"685","DOI":"10.1016\/j.chaos.2011.06.001","article-title":"Tumour\u2013host dynamics under radiotherapy","volume":"44","author":"Jim\u00e9nez","year":"2011","journal-title":"Chaos Solitons Fractals"},{"key":"10.1016\/j.matcom.2016.05.008_br000100","doi-asserted-by":"crossref","first-page":"e1003295","DOI":"10.1371\/journal.pcbi.1003295","article-title":"In silico analysis of cell cycle synchronisation effects in radiotherapy of tumour spheroids","volume":"9","author":"Kempf","year":"2013","journal-title":"PLoS Comput. Biol."},{"key":"10.1016\/j.matcom.2016.05.008_br000105","doi-asserted-by":"crossref","first-page":"4455","DOI":"10.1088\/0031-9155\/54\/14\/007","article-title":"A Markov decision process approach to temporal modulation of dose fractions in radiation therapy planning","volume":"54","author":"Kim","year":"2009","journal-title":"Phys. Med. Biol."},{"key":"10.1016\/j.matcom.2016.05.008_br000110","doi-asserted-by":"crossref","first-page":"210","DOI":"10.1016\/S0168-583X(01)01096-5","article-title":"Mathematical modelling of the response of tumour cells to radiotherapy","volume":"188","author":"Kirkby","year":"2002","journal-title":"Nucl. Instrum. Methods Phys. Res."},{"key":"10.1016\/j.matcom.2016.05.008_br000115","series-title":"Holland-Frei Cancer Medicine","article-title":"Beginning of angiogenesis research","author":"Kufe","year":"2003"},{"key":"10.1016\/j.matcom.2016.05.008_br000120","doi-asserted-by":"crossref","first-page":"603","DOI":"10.1016\/j.cell.2013.12.029","article-title":"Mathematical modeling of PDGF-driven glioblastoma reveals optimized radiation dosing schedules","volume":"156","author":"Leder","year":"2014","journal-title":"Cell"},{"key":"10.1016\/j.matcom.2016.05.008_br000125","series-title":"Optimization in Radiation Treatment Planning","author":"Lim","year":"2002"},{"key":"10.1016\/j.matcom.2016.05.008_br000130","doi-asserted-by":"crossref","first-page":"629","DOI":"10.1002\/cjs.11162","article-title":"Q-learning for estimating optimal dynamic treatment rules from observational data","volume":"40","author":"Moodie","year":"2012","journal-title":"Canad. J. Statist."},{"key":"10.1016\/j.matcom.2016.05.008_br000135","first-page":"bbs061","article-title":"Mathematical modeling of biological systems","author":"Motta","year":"2012","journal-title":"Brief. Bioinform."},{"key":"10.1016\/j.matcom.2016.05.008_br000140","doi-asserted-by":"crossref","first-page":"331","DOI":"10.1111\/1467-9868.00389","article-title":"Optimal dynamic treatment regimes","volume":"65","author":"Murphy","year":"2003","journal-title":"J. R. Stat. Soc. Ser. B."},{"key":"10.1016\/j.matcom.2016.05.008_br000145","series-title":"An Agent Based Model of Tumor Growth and Response to Radiotherapy, Mathematical Sciences","author":"O\u2019Neil","year":"2012"},{"key":"10.1016\/j.matcom.2016.05.008_br000150","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s00411-013-0497-2","article-title":"Current concepts in clinical radiation oncology","volume":"53","author":"Orth","year":"2014","journal-title":"Radiat. Environ. Biophys."},{"key":"10.1016\/j.matcom.2016.05.008_br000155","article-title":"Cancer vaccines: state of the art of the computational modeling approaches","volume":"2013","author":"Pappalardo","year":"2012","journal-title":"BioMed. Res. Int."},{"key":"10.1016\/j.matcom.2016.05.008_br000160","doi-asserted-by":"crossref","first-page":"e1003120","DOI":"10.1371\/journal.pcbi.1003120","article-title":"Towards predicting the response of a solid tumour to chemotherapy and radiotherapy treatments: clinical insights from a computational model","volume":"9","author":"Powathil","year":"2013","journal-title":"PLoS Comput. Biol."},{"key":"10.1016\/j.matcom.2016.05.008_br000165","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.jtbi.2012.05.015","article-title":"Modelling the effects of cell-cycle heterogeneity on the response of a solid tumour to chemotherapy: biological insights from a hybrid multiscale cellular automaton model","volume":"308","author":"Powathil","year":"2012","journal-title":"J. Theoret. Biol."},{"key":"10.1016\/j.matcom.2016.05.008_br000170","series-title":"Dynamic Optimization of Fractionation Schedules in Radiation Therapy","author":"Ramakrishnan","year":"2013"},{"key":"10.1016\/j.matcom.2016.05.008_br000175","unstructured":"R. Song, W. Wang, D. Zeng, M.R. Kosorok, Penalized Q-learning for dynamic treatment regimes, 2011. arXiv:1108.5338 \u00a0[stat.ME]."},{"key":"10.1016\/j.matcom.2016.05.008_br000180","doi-asserted-by":"crossref","first-page":"1764","DOI":"10.1109\/JPROC.2002.804685","article-title":"In silico radiation oncology: combining novel simulation algorithms with current visualization techniques","volume":"90","author":"Stamatakos","year":"2002","journal-title":"Proc. IEEE"},{"key":"10.1016\/j.matcom.2016.05.008_br000185","doi-asserted-by":"crossref","first-page":"1764","DOI":"10.1109\/JPROC.2002.804685","article-title":"In silico radiation oncology: combining novel simulation algorithms with current visualization techniques","volume":"90","author":"Stamatakos","year":"2002","journal-title":"Proc. IEEE"},{"key":"10.1016\/j.matcom.2016.05.008_br000190","series-title":"Reinforcement Learning: An Introduction","author":"Sutton","year":"1998"},{"key":"10.1016\/j.matcom.2016.05.008_br000195","series-title":"Fractionation in Radiotherapy","author":"Thames","year":"1987"},{"key":"10.1016\/j.matcom.2016.05.008_br000200","first-page":"1","article-title":"R marries NetLogo: introduction to the RNetLogo package","volume":"58","author":"Thiele","year":"2014","journal-title":"J. Stat."},{"key":"10.1016\/j.matcom.2016.05.008_br000205","unstructured":"S. Tisue, U. Wilensky, Netlogo: A simple environment for modeling complexity, in: International conference on complex systems, Boston, MA, 2004, pp. 16\u201321."},{"key":"10.1016\/j.matcom.2016.05.008_br000210","series-title":"Basic Clinical Radiobiology","author":"Van der Kogel","year":"2009"},{"key":"10.1016\/j.matcom.2016.05.008_br000215","series-title":"Blood Flow, Oxygen Consumption and Tissue Oxygenation of Human Tumors, Oxygen Transport to Tissue XII","first-page":"895","author":"Vaupel","year":"1990"},{"key":"10.1016\/j.matcom.2016.05.008_br000220","doi-asserted-by":"crossref","first-page":"1073","DOI":"10.1016\/S0360-3016(00)00534-4","article-title":"Dynamic optimization of a linear\u2013quadratic model with incomplete repair and volume-dependent sensitivity and repopulation","volume":"47","author":"Wein","year":"2000","journal-title":"Int. J. Radiat. Oncol.* Biol.* Phys."},{"key":"10.1016\/j.matcom.2016.05.008_br000225","doi-asserted-by":"crossref","first-page":"3294","DOI":"10.1002\/sim.3720","article-title":"Reinforcement learning design for cancer clinical trials","volume":"28","author":"Zhao","year":"2009","journal-title":"Stat. Med."}],"container-title":["Mathematics and Computers in Simulation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0378475416300878?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0378475416300878?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,9,9]],"date-time":"2019-09-09T16:16:04Z","timestamp":1568045764000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0378475416300878"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,3]]},"references-count":45,"alternative-id":["S0378475416300878"],"URL":"https:\/\/doi.org\/10.1016\/j.matcom.2016.05.008","relation":{},"ISSN":["0378-4754"],"issn-type":[{"value":"0378-4754","type":"print"}],"subject":[],"published":{"date-parts":[[2017,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Simulation-based optimization of radiotherapy: Agent-based modeling and reinforcement learning","name":"articletitle","label":"Article Title"},{"value":"Mathematics and Computers in Simulation","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.matcom.2016.05.008","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2016 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}