{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T02:50:40Z","timestamp":1714531840675},"reference-count":33,"publisher":"Elsevier BV","issue":"9","license":[{"start":{"date-parts":[[2012,5,1]],"date-time":"2012-05-01T00:00:00Z","timestamp":1335830400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Mathematics and Computers in Simulation"],"published-print":{"date-parts":[[2012,5]]},"DOI":"10.1016\/j.matcom.2012.03.007","type":"journal-article","created":{"date-parts":[[2012,4,7]],"date-time":"2012-04-07T14:59:21Z","timestamp":1333810761000},"page":"1630-1644","source":"Crossref","is-referenced-by-count":18,"title":["Spectral collocation method for stochastic Burgers equation driven by additive noise"],"prefix":"10.1016","volume":"82","author":[{"given":"Minoo","family":"Kamrani","sequence":"first","affiliation":[]},{"given":"S. Mohammad","family":"Hosseini","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.matcom.2012.03.007_bib0005","series-title":"From Stochastic Calculus to Mathematical Finance","article-title":"On numerical approximation of stochastic Burgers\u2019 equation","author":"Alabert","year":"2006"},{"issue":"3\u20134","key":"10.1016\/j.matcom.2012.03.007_bib0010","doi-asserted-by":"crossref","first-page":"268","DOI":"10.1080\/01630560801998138","article-title":"On modified Crank-Nicholson difference schemes for stochastic parabolic equation","volume":"29","author":"Ashyralyev","year":"2008","journal-title":"Numerical Functional Analysis and Optimization"},{"key":"10.1016\/j.matcom.2012.03.007_bib0015","series-title":"Nonlinear Stochastic Evolution Problems in Applied Sciences","author":"Bellomo","year":"1992"},{"key":"10.1016\/j.matcom.2012.03.007_bib0020","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1016\/0378-4754(89)90049-9","article-title":"Stochastic partial differential equations in continuum physics on the foundations of the stochastic interpolation methods for Ito\u02c6 type equations","volume":"31","author":"Bellomo","year":"1989","journal-title":"Mathematics and Computers in Simulation"},{"key":"10.1016\/j.matcom.2012.03.007_bib0025","unstructured":"D. Bl\u00f6mker, A. Jentzen, Galerkin Approximations for the Stochastic Burgers Equation, in press."},{"issue":"2","key":"10.1016\/j.matcom.2012.03.007_bib0030","doi-asserted-by":"crossref","first-page":"127","DOI":"10.1111\/1467-9965.00028","article-title":"The market model of interest rate dynamics","volume":"7","author":"Brace","year":"1997","journal-title":"Mathematical Finance"},{"key":"10.1016\/j.matcom.2012.03.007_bib0035","unstructured":"P.M. Burrage, Runge Kutta methods for stochastic differential equations (chapters 3, 4), Ph.D. Thesis, The University of Queensland, Australia, 1999."},{"key":"10.1016\/j.matcom.2012.03.007_bib0040","unstructured":"J.P. Boyd, Chebyshev and Fourier Spectral Methods, 2nd ed., Springer-Verlag, 2000."},{"key":"10.1016\/j.matcom.2012.03.007_bib0045","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1017\/S0962492900002804","article-title":"Monte Carlo and Quasi-Monte Carlo methods","author":"Caflisch","year":"1998","journal-title":"Acta Numerica"},{"key":"10.1016\/j.matcom.2012.03.007_bib0050","doi-asserted-by":"crossref","first-page":"389","DOI":"10.1007\/BF01194987","article-title":"Stochastic Burgers equation","volume":"1","author":"Da Prato","year":"1994","journal-title":"Nonlinear Differential Equations and Applications"},{"key":"10.1016\/j.matcom.2012.03.007_bib0055","doi-asserted-by":"crossref","first-page":"29","DOI":"10.1080\/17442509508833962","article-title":"Stochastic Burgers equation with correlated noise","volume":"52","author":"Da Prato","year":"1995","journal-title":"Stochastics and Stochastics Reports"},{"key":"10.1016\/j.matcom.2012.03.007_bib0060","doi-asserted-by":"crossref","first-page":"631","DOI":"10.1016\/j.cam.2006.08.012","article-title":"A new adaptive Runge Kutta method for stochastic differential equations","volume":"206","author":"Foroush Bastani","year":"2007","journal-title":"Journal of Computational and Applied Mathematics"},{"key":"10.1016\/j.matcom.2012.03.007_bib0065","doi-asserted-by":"crossref","first-page":"271","DOI":"10.1016\/S0304-4149(97)00103-8","article-title":"Existence and uniqueness results for semilinear stochastic partial differential equations","volume":"73","author":"Gy\u00f6ngy","year":"1988","journal-title":"Stochastic Processes and Their Applications"},{"issue":"1","key":"10.1016\/j.matcom.2012.03.007_bib0070","doi-asserted-by":"crossref","first-page":"437","DOI":"10.1137\/050654141","article-title":"Finite element approximation of stochastic partial differential equations driven by Poisson random measures of jump type","volume":"46","author":"Hausenblas","year":"2007","journal-title":"SIAM Journal on Numerical Analysis"},{"key":"10.1016\/j.matcom.2012.03.007_bib0075","doi-asserted-by":"crossref","first-page":"141","DOI":"10.1023\/A:1020552804087","article-title":"Approximation for semilinear stochastic evolution equations","volume":"18","author":"Hausenblas","year":"2003","journal-title":"Potential Analysis"},{"issue":"2","key":"10.1016\/j.matcom.2012.03.007_bib0080","doi-asserted-by":"crossref","first-page":"485","DOI":"10.1016\/S0377-0427(02)00483-1","article-title":"Numerical analysis of semilinear stochastic evolution equations in Banach spaces","volume":"147","author":"Hausenblas","year":"2002","journal-title":"Journal of Computational and Applied Mathematics"},{"key":"10.1016\/j.matcom.2012.03.007_bib0085","doi-asserted-by":"crossref","first-page":"687","DOI":"10.1016\/j.jcp.2006.01.008","article-title":"Wiener Chaos expansions and numerical solutions of randomly forced equations of fluid mechanics","volume":"216","author":"Hou","year":"2006","journal-title":"Journal of Computational Physics"},{"key":"10.1016\/j.matcom.2012.03.007_bib0090","doi-asserted-by":"crossref","first-page":"375","DOI":"10.1007\/s11118-009-9139-3","article-title":"Pathwise numerical approximations of SPDEs with additive noise under non-global Lipschitz coefficients","volume":"31","author":"Jentzen","year":"2009","journal-title":"Potential Analysis"},{"issue":"2102","key":"10.1016\/j.matcom.2012.03.007_bib0095","doi-asserted-by":"crossref","first-page":"649","DOI":"10.1098\/rspa.2008.0325","article-title":"Overcoming the order barrier in the numerical approximation of SPDEs with additive space-time noise.","volume":"465","author":"Jentzen","year":"2009","journal-title":"Proceedings of the Royal Society A"},{"key":"10.1016\/j.matcom.2012.03.007_bib0100","doi-asserted-by":"crossref","first-page":"1426","DOI":"10.1016\/j.cam.2010.02.018","article-title":"The role of coefficients of a general SPDE on the stability and convergence of a finite difference method","volume":"234","author":"Kamrani","year":"2010","journal-title":"Journal of Computational and Applied Mathematics"},{"key":"10.1016\/j.matcom.2012.03.007_bib0105","series-title":"Numerical Solution of Stochastic Differential Equations","author":"Kloeden","year":"1992"},{"issue":"1","key":"10.1016\/j.matcom.2012.03.007_bib0110","doi-asserted-by":"crossref","first-page":"47","DOI":"10.1155\/S1048953301000053","article-title":"Linear-implicit strong schemes for It\u00f4-Galerkin approximations of stochastic PDEs","volume":"14","author":"Kloeden","year":"2001","journal-title":"Journal of Applied Mathematics and Stochastic Analysis"},{"key":"10.1016\/j.matcom.2012.03.007_bib0115","series-title":"A Thesis Presented in Computational and Applied Mathematics","article-title":"Optimization governed by stochastic partial differential equations","author":"Kouri","year":"2010"},{"issue":"2","key":"10.1016\/j.matcom.2012.03.007_bib0120","doi-asserted-by":"crossref","first-page":"361","DOI":"10.4310\/CMS.2003.v1.n2.a9","article-title":"Convergence of the spectral method for stochastic Ginzburg-Landau equation driven by space-time white noise","volume":"1","author":"Liu","year":"2003","journal-title":"Communications in Mathematical Science"},{"issue":"2","key":"10.1016\/j.matcom.2012.03.007_bib0125","doi-asserted-by":"crossref","first-page":"870","DOI":"10.1137\/050640138","article-title":"Post processing for stochastic parabolic partial differential equations","volume":"45","author":"Lord","year":"2007","journal-title":"SIAM Journal on Numerical Analysis"},{"key":"10.1016\/j.matcom.2012.03.007_bib0130","doi-asserted-by":"crossref","first-page":"246","DOI":"10.1006\/jcph.1998.6006","article-title":"Numerical simulation of randomly forced turbulent flows","volume":"145","author":"Machiels","year":"1998","journal-title":"Journal of Computational Physics"},{"key":"10.1016\/j.matcom.2012.03.007_bib0135","doi-asserted-by":"crossref","first-page":"1250","DOI":"10.1137\/S0036141002409167","article-title":"Stochastic Navier\u2013Stokes equations for turbulence flow","author":"Mikulevicius","year":"2004","journal-title":"SIAM Journal on Mathematical Analysis"},{"key":"10.1016\/j.matcom.2012.03.007_bib0140","doi-asserted-by":"crossref","unstructured":"G.N. Milstein, Numerical Integration of Stochastic Differential Equations, Kluwer Academic Publishers, 1995.","DOI":"10.1007\/978-94-015-8455-5"},{"issue":"2","key":"10.1016\/j.matcom.2012.03.007_bib0145","doi-asserted-by":"crossref","first-page":"393","DOI":"10.1007\/s10543-007-0129-9","article-title":"An implicit Euler scheme with non-uniform time discretization for heat equations with multiplicative noise","volume":"47","author":"Muller-Gronbach","year":"2007","journal-title":"BIT"},{"key":"10.1016\/j.matcom.2012.03.007_bib0150","doi-asserted-by":"crossref","first-page":"197","DOI":"10.1017\/S0962492900002920","article-title":"An introduction to numerical methods for stochastic differential equations","author":"Platen","year":"1999","journal-title":"Acta Numerica"},{"key":"10.1016\/j.matcom.2012.03.007_bib0155","doi-asserted-by":"crossref","first-page":"221","DOI":"10.1080\/07362990500397764","article-title":"A Combination of Finite Difference and Wong-Zakai Methods for Hyperbolic Stochastic Partial Differential Equations","volume":"24","author":"Roth","year":"2006","journal-title":"Stochastic Analysis and Applications"},{"key":"10.1016\/j.matcom.2012.03.007_bib0160","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s11118-004-2950-y","article-title":"Finite Element Methods for Parabolic Stochastic PDE's","volume":"23","author":"Walsh","year":"2005","journal-title":"Potential Analysis"},{"key":"10.1016\/j.matcom.2012.03.007_bib0165","doi-asserted-by":"crossref","first-page":"1363","DOI":"10.1137\/040605278","article-title":"Galerkin finite element methods for stochastic parabolic partial differential equations","volume":"43","author":"Yan","year":"2005","journal-title":"SIAM Journal on Numerical Analysis"}],"container-title":["Mathematics and Computers in Simulation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0378475412000729?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0378475412000729?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2018,11,24]],"date-time":"2018-11-24T07:27:21Z","timestamp":1543044441000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0378475412000729"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2012,5]]},"references-count":33,"journal-issue":{"issue":"9","published-print":{"date-parts":[[2012,5]]}},"alternative-id":["S0378475412000729"],"URL":"https:\/\/doi.org\/10.1016\/j.matcom.2012.03.007","relation":{},"ISSN":["0378-4754"],"issn-type":[{"value":"0378-4754","type":"print"}],"subject":[],"published":{"date-parts":[[2012,5]]}}}