{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,27]],"date-time":"2024-10-27T16:40:03Z","timestamp":1730047203882,"version":"3.28.0"},"reference-count":88,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T00:00:00Z","timestamp":1725148800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T00:00:00Z","timestamp":1725148800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T00:00:00Z","timestamp":1725148800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T00:00:00Z","timestamp":1725148800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T00:00:00Z","timestamp":1725148800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T00:00:00Z","timestamp":1725148800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T00:00:00Z","timestamp":1725148800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100010882","name":"Tianjin Municipal Education Commission","doi-asserted-by":"publisher","award":["2023KJ186"],"id":[{"id":"10.13039\/501100010882","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Knowledge-Based Systems"],"published-print":{"date-parts":[[2024,9]]},"DOI":"10.1016\/j.knosys.2024.111978","type":"journal-article","created":{"date-parts":[[2024,6,1]],"date-time":"2024-06-01T00:55:30Z","timestamp":1717203330000},"page":"111978","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":3,"special_numbering":"C","title":["VPE-WSVAD: Visual prompt exemplars for weakly-supervised video anomaly detection"],"prefix":"10.1016","volume":"299","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-6851-4142","authenticated-orcid":false,"given":"Yong","family":"Su","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0009-0000-7175-6989","authenticated-orcid":false,"given":"Yuyu","family":"Tan","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6082-4675","authenticated-orcid":false,"given":"Meng","family":"Xing","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7316-336X","authenticated-orcid":false,"given":"Simin","family":"An","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"5","key":"10.1016\/j.knosys.2024.111978_b1","first-page":"2293","article-title":"A survey of single-scene video anomaly detection","volume":"44","author":"Ramachandra","year":"2022","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"7","key":"10.1016\/j.knosys.2024.111978_b2","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3464423","article-title":"Deep learning for medical anomaly detection\u2013a survey","volume":"54","author":"Fernando","year":"2021","journal-title":"ACM Comput. Surv."},{"issue":"3","key":"10.1016\/j.knosys.2024.111978_b3","doi-asserted-by":"crossref","first-page":"1650","DOI":"10.1109\/TITS.2020.2975043","article-title":"End-to-end autonomous driving risk analysis: A behavioural anomaly detection approach","volume":"22","author":"Ryan","year":"2021","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"doi-asserted-by":"crossref","unstructured":"Z. Liu, Y. Nie, C. Long, Q. Zhang, G. Li, A Hybrid Video Anomaly Detection Framework via Memory-Augmented Flow Reconstruction and Flow-Guided Frame Prediction, in: IEEE International Conference on Computer Vision, ICCV, 2021, pp. 13568\u201313577.","key":"10.1016\/j.knosys.2024.111978_b4","DOI":"10.1109\/ICCV48922.2021.01333"},{"key":"10.1016\/j.knosys.2024.111978_b5","doi-asserted-by":"crossref","DOI":"10.1016\/j.cviu.2020.102920","article-title":"Video anomaly detection and localization via Gaussian mixture fully convolutional variational autoencoder","volume":"195","author":"Fan","year":"2020","journal-title":"Comput. Vis. Image Underst."},{"doi-asserted-by":"crossref","unstructured":"D. Gong, L. Liu, V. Le, B. Saha, M.R. Mansour, S. Venkatesh, A. van den Hengel, Memorizing Normality to Detect Anomaly: Memory-Augmented Deep Autoencoder for Unsupervised Anomaly Detection, in: IEEE International Conference on Computer Vision, ICCV, 2019, pp. 1705\u20131714.","key":"10.1016\/j.knosys.2024.111978_b6","DOI":"10.1109\/ICCV.2019.00179"},{"doi-asserted-by":"crossref","unstructured":"M. Hasan, J. Choi, J. Neumann, A.K. Roy-Chowdhury, L.S. Davis, Learning Temporal Regularity in Video Sequences, in: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2016, pp. 733\u2013742.","key":"10.1016\/j.knosys.2024.111978_b7","DOI":"10.1109\/CVPR.2016.86"},{"doi-asserted-by":"crossref","unstructured":"W. Luo, W. Liu, S. Gao, Remembering history with convolutional LSTM for anomaly detection, in: IEEE International Conference on Multimedia and Expo, ICME, 2017, pp. 439\u2013444.","key":"10.1016\/j.knosys.2024.111978_b8","DOI":"10.1109\/ICME.2017.8019325"},{"doi-asserted-by":"crossref","unstructured":"T. Nguyen, J. Meunier, Anomaly Detection in Video Sequence With Appearance-Motion Correspondence, in: IEEE International Conference on Computer Vision, ICCV, 2019, pp. 1273\u20131283.","key":"10.1016\/j.knosys.2024.111978_b9","DOI":"10.1109\/ICCV.2019.00136"},{"doi-asserted-by":"crossref","unstructured":"H. Park, J. Noh, B. Ham, Learning Memory-Guided Normality for Anomaly Detection, in: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2020, pp. 14360\u201314369.","key":"10.1016\/j.knosys.2024.111978_b10","DOI":"10.1109\/CVPR42600.2020.01438"},{"doi-asserted-by":"crossref","unstructured":"W. Liu, W. Luo, D. Lian, S. Gao, Future Frame Prediction for Anomaly Detection - A New Baseline, in: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2018, pp. 6536\u20136545.","key":"10.1016\/j.knosys.2024.111978_b11","DOI":"10.1109\/CVPR.2018.00684"},{"doi-asserted-by":"crossref","unstructured":"G. Yu, S. Wang, Z. Cai, E. Zhu, C. Xu, J. Yin, M. Kloft, Cloze Test Helps: Effective Video Anomaly Detection via Learning to Complete Video Events, in: ACM International Conference on Multimedia, MM, 2020, pp. 583\u2013591.","key":"10.1016\/j.knosys.2024.111978_b12","DOI":"10.1145\/3394171.3413973"},{"doi-asserted-by":"crossref","unstructured":"R. Cai, H. Zhang, W. Liu, S. Gao, Z. Hao, Appearance-Motion Memory Consistency Network for Video Anomaly Detection, in: AAAI Conference on Artificial Intelligence, AAAI, 2021, pp. 938\u2013946.","key":"10.1016\/j.knosys.2024.111978_b13","DOI":"10.1609\/aaai.v35i2.16177"},{"issue":"6","key":"10.1016\/j.knosys.2024.111978_b14","doi-asserted-by":"crossref","first-page":"2301","DOI":"10.1109\/TNNLS.2021.3083152","article-title":"Robust unsupervised video anomaly detection by multipath frame prediction","volume":"33","author":"Wang","year":"2022","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.knosys.2024.111978_b15","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2022.108703","article-title":"Unsupervised video anomaly detection via normalizing flows with implicit latent features","volume":"129","author":"Cho","year":"2022","journal-title":"Pattern Recognit."},{"doi-asserted-by":"crossref","unstructured":"X. Lin, Y. Chen, G. Li, Y. Yu, A Causal Inference Look at Unsupervised Video Anomaly Detection, in: AAAI Conference on Artificial Intelligence, AAAI, 2022, pp. 1620\u20131629.","key":"10.1016\/j.knosys.2024.111978_b16","DOI":"10.1609\/aaai.v36i2.20053"},{"doi-asserted-by":"crossref","unstructured":"A. Acsintoae, A. Florescu, M. Georgescu, T. Mare, P. Sumedrea, R.T. Ionescu, F.S. Khan, M. Shah, UBnormal: New Benchmark for Supervised Open-Set Video Anomaly Detection, in: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2022, pp. 20111\u201320121.","key":"10.1016\/j.knosys.2024.111978_b17","DOI":"10.1109\/CVPR52688.2022.01951"},{"doi-asserted-by":"crossref","unstructured":"M.Z. Zaheer, A. Mahmood, M.H. Khan, M. Seg\u00f9, F. Yu, S. Lee, Generative Cooperative Learning for Unsupervised Video Anomaly Detection, in: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2022, pp. 14724\u201314734.","key":"10.1016\/j.knosys.2024.111978_b18","DOI":"10.1109\/CVPR52688.2022.01433"},{"key":"10.1016\/j.knosys.2024.111978_b19","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2021.107969","article-title":"NM-GAN: Noise-modulated generative adversarial network for video anomaly detection","volume":"116","author":"Chen","year":"2021","journal-title":"Pattern Recognit."},{"doi-asserted-by":"crossref","unstructured":"Y. Tian, G. Pang, Y. Chen, R. Singh, J.W. Verjans, G. Carneiro, Weakly-supervised Video Anomaly Detection with Robust Temporal Feature Magnitude Learning, in: IEEE International Conference on Computer Vision, ICCV, 2021, pp. 4955\u20134966.","key":"10.1016\/j.knosys.2024.111978_b20","DOI":"10.1109\/ICCV48922.2021.00493"},{"key":"10.1016\/j.knosys.2024.111978_b21","doi-asserted-by":"crossref","first-page":"154","DOI":"10.1016\/j.neucom.2022.01.026","article-title":"Weakly-supervised anomaly detection in video surveillance via graph convolutional label noise cleaning","volume":"481","author":"Li","year":"2022","journal-title":"Neurocomputing"},{"doi-asserted-by":"crossref","unstructured":"J. Wu, W. Zhang, G. Li, W. Wu, X. Tan, Y. Li, E. Ding, L. Lin, Weakly-Supervised Spatio-Temporal Anomaly Detection in Surveillance Video, in: International Joint Conference on Artificial Intelligence, IJCAI, 2021, pp. 1172\u20131178.","key":"10.1016\/j.knosys.2024.111978_b22","DOI":"10.24963\/ijcai.2021\/162"},{"doi-asserted-by":"crossref","unstructured":"W. Sultani, C. Chen, M. Shah, Real-World Anomaly Detection in Surveillance Videos, in: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2018, pp. 6479\u20136488.","key":"10.1016\/j.knosys.2024.111978_b23","DOI":"10.1109\/CVPR.2018.00678"},{"doi-asserted-by":"crossref","unstructured":"J. Feng, F. Hong, W. Zheng, MIST: Multiple Instance Self-Training Framework for Video Anomaly Detection, in: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2021, pp. 14009\u201314018.","key":"10.1016\/j.knosys.2024.111978_b24","DOI":"10.1109\/CVPR46437.2021.01379"},{"doi-asserted-by":"crossref","unstructured":"J. Zhong, N. Li, W. Kong, S. Liu, T.H. Li, G. Li, Graph Convolutional Label Noise Cleaner: Train a Plug-And-Play Action Classifier for Anomaly Detection, in: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2019, pp. 1237\u20131246.","key":"10.1016\/j.knosys.2024.111978_b25","DOI":"10.1109\/CVPR.2019.00133"},{"doi-asserted-by":"crossref","unstructured":"S. Park, H. Kim, M. Kim, D. Kim, K. Sohn, Normality Guided Multiple Instance Learning for Weakly Supervised Video Anomaly Detection, in: IEEE Winter Conference on Applications of Computer Vision, WACV, 2023, pp. 2664\u20132673.","key":"10.1016\/j.knosys.2024.111978_b26","DOI":"10.1109\/WACV56688.2023.00269"},{"key":"10.1016\/j.knosys.2024.111978_b27","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2023.110872","article-title":"Prime: privacy-preserving video anomaly detection via motion exemplar guidance","volume":"278","author":"Su","year":"2023","journal-title":"Knowl.-Based Syst."},{"issue":"5","key":"10.1016\/j.knosys.2024.111978_b28","doi-asserted-by":"crossref","first-page":"1390","DOI":"10.1109\/TIFS.2018.2878538","article-title":"Generative neural networks for anomaly detection in crowded scenes","volume":"14","author":"Wang","year":"2019","journal-title":"IEEE Trans. Inf. Forensics Secur."},{"unstructured":"B. Sch\u00f6lkopf, R.C. Williamson, A.J. Smola, J. Shawe-Taylor, J.C. Platt, Support Vector Method for Novelty Detection, in: Advances in Neural Information Processing Systems, NIPS, 1999, pp. 582\u2013588.","key":"10.1016\/j.knosys.2024.111978_b29"},{"doi-asserted-by":"crossref","unstructured":"N.-C. Ristea, N. Madan, R.T. Ionescu, K. Nasrollahi, F.S. Khan, T.B. Moeslund, M. Shah, Self-supervised predictive convolutional attentive block for anomaly detection, in: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2022, pp. 13576\u201313586.","key":"10.1016\/j.knosys.2024.111978_b30","DOI":"10.1109\/CVPR52688.2022.01321"},{"key":"10.1016\/j.knosys.2024.111978_b31","doi-asserted-by":"crossref","DOI":"10.1016\/j.cviu.2023.103656","article-title":"SSMTL++: Revisiting self-supervised multi-task learning for video anomaly detection","volume":"229","author":"Barbalau","year":"2023","journal-title":"Comput. Vis. Image Underst."},{"year":"2021","author":"PourReza","series-title":"Ano-graph: Learning normal scene contextual graphs to detect video anomalies","key":"10.1016\/j.knosys.2024.111978_b32"},{"issue":"4","key":"10.1016\/j.knosys.2024.111978_b33","doi-asserted-by":"crossref","DOI":"10.1016\/j.ipm.2022.102983","article-title":"Spatio-temporal graph-based CNNs for anomaly detection in weakly-labeled videos","volume":"59","author":"Mu","year":"2022","journal-title":"Inf. Process. Manage."},{"doi-asserted-by":"crossref","unstructured":"S. Pal, A. Valkanas, F. Regol, M. Coates, Bag Graph: Multiple Instance Learning using Bayesian Graph Neural Networks, in: AAAI Conference on Artificial Intelligence, AAAI, 2022, pp. 814\u2013826.","key":"10.1016\/j.knosys.2024.111978_b34","DOI":"10.1609\/aaai.v36i7.20762"},{"issue":"11","key":"10.1016\/j.knosys.2024.111978_b35","doi-asserted-by":"crossref","first-page":"665","DOI":"10.1038\/s42256-020-00257-z","article-title":"Shortcut learning in deep neural networks","volume":"2","author":"Geirhos","year":"2020","journal-title":"Nat. Mach. Intell."},{"issue":"9","key":"10.1016\/j.knosys.2024.111978_b36","doi-asserted-by":"crossref","first-page":"195:1","DOI":"10.1145\/3560815","article-title":"Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing","volume":"55","author":"Liu","year":"2023","journal-title":"ACM Comput. Surv."},{"unstructured":"T.B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D.M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, D. Amodei, Language Models are Few-Shot Learners, in: Advances in Neural Information Processing Systems, NeurIPS, 2020.","key":"10.1016\/j.knosys.2024.111978_b37"},{"unstructured":"A. Radford, J.W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark, G. Krueger, I. Sutskever, Learning Transferable Visual Models From Natural Language Supervision, in: International Conference on Machine Learning, ICML, Vol. 139, 2021, pp. 8748\u20138763.","key":"10.1016\/j.knosys.2024.111978_b38"},{"year":"2021","author":"Yao","series-title":"CPT: colorful prompt tuning for pre-trained vision-language models","key":"10.1016\/j.knosys.2024.111978_b39"},{"issue":"9","key":"10.1016\/j.knosys.2024.111978_b40","doi-asserted-by":"crossref","first-page":"2337","DOI":"10.1007\/s11263-022-01653-1","article-title":"Learning to prompt for vision-language models","volume":"130","author":"Zhou","year":"2022","journal-title":"Int. J. Comput. Vis."},{"issue":"5","key":"10.1016\/j.knosys.2024.111978_b41","doi-asserted-by":"crossref","first-page":"307","DOI":"10.1037\/h0035592","article-title":"Situationism in psychology: an analysis and a critique","volume":"80","author":"Bowers","year":"1973","journal-title":"Psychol. Rev."},{"doi-asserted-by":"crossref","unstructured":"W. Luo, W. Liu, S. Gao, A Revisit of Sparse Coding Based Anomaly Detection in Stacked RNN Framework, in: IEEE International Conference on Computer Vision, ICCV, 2017, pp. 341\u2013349.","key":"10.1016\/j.knosys.2024.111978_b42","DOI":"10.1109\/ICCV.2017.45"},{"doi-asserted-by":"crossref","unstructured":"V. Mahadevan, W. Li, V. Bhalodia, N. Vasconcelos, Anomaly detection in crowded scenes, in: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2010, pp. 1975\u20131981.","key":"10.1016\/j.knosys.2024.111978_b43","DOI":"10.1109\/CVPR.2010.5539872"},{"doi-asserted-by":"crossref","unstructured":"C. Lu, J. Shi, J. Jia, Abnormal Event Detection at 150 FPS in MATLAB, in: IEEE International Conference on Computer Vision, ICCV, 2013, pp. 2720\u20132727.","key":"10.1016\/j.knosys.2024.111978_b44","DOI":"10.1109\/ICCV.2013.338"},{"key":"10.1016\/j.knosys.2024.111978_b45","doi-asserted-by":"crossref","first-page":"8429","DOI":"10.1109\/TIP.2020.3013168","article-title":"Unsupervised learning of optical flow with CNN-based non-local filtering","volume":"29","author":"Tian","year":"2020","journal-title":"IEEE Trans. Image Process."},{"doi-asserted-by":"crossref","unstructured":"Y. Chang, Z. Tu, W. Xie, J. Yuan, Clustering Driven Deep Autoencoder for Video Anomaly Detection, in: European Conference Computer Vision, ECCV, Vol. 12360, 2020, pp. 329\u2013345.","key":"10.1016\/j.knosys.2024.111978_b46","DOI":"10.1007\/978-3-030-58555-6_20"},{"doi-asserted-by":"crossref","unstructured":"M. Georgescu, A. Barbalau, R.T. Ionescu, F.S. Khan, M. Popescu, M. Shah, Anomaly Detection in Video via Self-Supervised and Multi-Task Learning, in: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2021, pp. 12742\u201312752.","key":"10.1016\/j.knosys.2024.111978_b47","DOI":"10.1109\/CVPR46437.2021.01255"},{"doi-asserted-by":"crossref","unstructured":"P. Perera, R. Nallapati, B. Xiang, OCGAN: One-Class Novelty Detection Using GANs With Constrained Latent Representations, in: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2019, pp. 2898\u20132906.","key":"10.1016\/j.knosys.2024.111978_b48","DOI":"10.1109\/CVPR.2019.00301"},{"doi-asserted-by":"crossref","unstructured":"K. Doshi, Y. Yilmaz, Continual Learning for Anomaly Detection in Surveillance Videos, in: IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPRW, 2020, pp. 1025\u20131034.","key":"10.1016\/j.knosys.2024.111978_b49","DOI":"10.1109\/CVPRW50498.2020.00135"},{"doi-asserted-by":"crossref","unstructured":"B. Wan, Y. Fang, X. Xia, J. Mei, Weakly Supervised Video Anomaly Detection via Center-Guided Discriminative Learning, in: IEEE International Conference on Multimedia and Expo, ICME, 2020, pp. 1\u20136.","key":"10.1016\/j.knosys.2024.111978_b50","DOI":"10.1109\/ICME46284.2020.9102722"},{"doi-asserted-by":"crossref","unstructured":"S. Li, F. Liu, L.C. Jiao, Self-training multi-sequence learning with Transformer for weakly supervised video anomaly detection, in: AAAI Conference on Artificial Intelligence, AAAI, 2022.","key":"10.1016\/j.knosys.2024.111978_b51","DOI":"10.1609\/aaai.v36i2.20028"},{"doi-asserted-by":"crossref","unstructured":"C. Cao, X. Zhang, S. Zhang, P. Wang, Y. Zhang, Weakly Supervised Video Anomaly Detection Based on Cross-Batch Clustering Guidance, in: IEEE International Conference on Multimedia and Expo, ICME, 2023, pp. 2723\u20132728.","key":"10.1016\/j.knosys.2024.111978_b52","DOI":"10.1109\/ICME55011.2023.00463"},{"doi-asserted-by":"crossref","unstructured":"Z.-H. Zhou, Y.-Y. Sun, Y.-F. Li, Multi-instance learning by treating instances as non-iid samples, in: International Conference on Machine Learning, ICML, 2009, pp. 1249\u20131256.","key":"10.1016\/j.knosys.2024.111978_b53","DOI":"10.1145\/1553374.1553534"},{"key":"10.1016\/j.knosys.2024.111978_b54","article-title":"Explicit metric-based multiconcept multi-instance learning with triplet and superbag","author":"Chi","year":"2021","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.knosys.2024.111978_b55","doi-asserted-by":"crossref","DOI":"10.1016\/j.cviu.2021.103300","article-title":"Reliable shot identification for complex event detection via visual-semantic embedding","volume":"213","author":"Luo","year":"2021","journal-title":"Comput. Vis. Image Underst."},{"doi-asserted-by":"crossref","unstructured":"Z. Xing, H. Li, Z. Wu, Y. Jiang, Semi-supervised Single-View 3D Reconstruction via Prototype Shape Priors, in: European Conference on Computer Vision, ECCV, Vol. 13661, 2022, pp. 535\u2013551.","key":"10.1016\/j.knosys.2024.111978_b56","DOI":"10.1007\/978-3-031-19769-7_31"},{"unstructured":"X. Zhou, X. Liu, D. Zhai, J. Jiang, X. Gao, X. Ji, Prototype-Anchored Learning for Learning with Imperfect Annotations, in: International Conference on Machine Learning, ICML, Vol. 162, 2022, pp. 27245\u201327267.","key":"10.1016\/j.knosys.2024.111978_b57"},{"doi-asserted-by":"crossref","unstructured":"M. Jia, L. Tang, B.-C. Chen, C. Cardie, S. Belongie, B. Hariharan, S.-N. Lim, Visual prompt tuning, in: European Conference on Computer Vision, ECCV, 2022, pp. 709\u2013727.","key":"10.1016\/j.knosys.2024.111978_b58","DOI":"10.1007\/978-3-031-19827-4_41"},{"year":"2022","author":"Chen","series-title":"Adaptformer: Adapting vision transformers for scalable visual recognition","key":"10.1016\/j.knosys.2024.111978_b59"},{"doi-asserted-by":"crossref","unstructured":"B. Ye, H. Chang, B. Ma, S. Shan, X. Chen, Joint feature learning and relation modeling for tracking: A one-stream framework, in: European Conference on Computer Vision, ECCV, 2022, pp. 341\u2013357.","key":"10.1016\/j.knosys.2024.111978_b60","DOI":"10.1007\/978-3-031-20047-2_20"},{"doi-asserted-by":"crossref","unstructured":"J. Zhu, S. Lai, X. Chen, D. Wang, H. Lu, Visual prompt multi-modal tracking, in: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2023, pp. 9516\u20139526.","key":"10.1016\/j.knosys.2024.111978_b61","DOI":"10.1109\/CVPR52729.2023.00918"},{"year":"2023","author":"Lin","series-title":"Exploring visual prompts for whole slide image classification with multiple instance learning","key":"10.1016\/j.knosys.2024.111978_b62"},{"doi-asserted-by":"crossref","unstructured":"X. Liang, M. Niu, J. Han, H. Xu, C. Xu, X. Liang, Visual Exemplar Driven Task-Prompting for Unified Perception in Autonomous Driving, in: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2023, pp. 9611\u20139621.","key":"10.1016\/j.knosys.2024.111978_b63","DOI":"10.1109\/CVPR52729.2023.00927"},{"key":"10.1016\/j.knosys.2024.111978_b64","first-page":"1","article-title":"Symbiotic attention for egocentric action recognition with object-centric alignment","author":"Wang","year":"2020","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.knosys.2024.111978_b65","first-page":"1","article-title":"Align and tell: Boosting text-video retrieval with local alignment and fine-grained supervision","author":"Wang","year":"2022","journal-title":"IEEE Trans. Multimed."},{"key":"10.1016\/j.knosys.2024.111978_b66","doi-asserted-by":"crossref","first-page":"2003","DOI":"10.1109\/TIP.2022.3189803","article-title":"Pedestrian detection by exemplar-guided contrastive learning","volume":"32","author":"Lin","year":"2023","journal-title":"IEEE Trans. Image Process."},{"doi-asserted-by":"crossref","unstructured":"J. Hwang, S.W. Oh, J. Lee, B. Han, Exemplar-Based Open-Set Panoptic Segmentation Network, in: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2021, pp. 1175\u20131184.","key":"10.1016\/j.knosys.2024.111978_b67","DOI":"10.1109\/CVPR46437.2021.00123"},{"doi-asserted-by":"crossref","unstructured":"T. Wang, X. Zhang, L. Yuan, J. Feng, Few-Shot Adaptive Faster R-CNN, in: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2019, pp. 7173\u20137182.","key":"10.1016\/j.knosys.2024.111978_b68","DOI":"10.1109\/CVPR.2019.00734"},{"doi-asserted-by":"crossref","unstructured":"S. Li, F. Liu, L. Jiao, Self-Training Multi-Sequence Learning with Transformer for Weakly Supervised Video Anomaly Detection, in: AAAI Conference on Artificial Intelligence, AAAI, 2022, pp. 1395\u20131403.","key":"10.1016\/j.knosys.2024.111978_b69","DOI":"10.1609\/aaai.v36i2.20028"},{"doi-asserted-by":"crossref","unstructured":"T. Lin, M. Maire, S.J. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollar, C.L. Zitnick, Microsoft COCO: Common Objects in Context, in: European Conference Computer Vision, ECCV, 2014, pp. 740\u2013755.","key":"10.1016\/j.knosys.2024.111978_b70","DOI":"10.1007\/978-3-319-10602-1_48"},{"doi-asserted-by":"crossref","unstructured":"J. Carreira, A. Zisserman, Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset, in: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2017, pp. 4724\u20134733.","key":"10.1016\/j.knosys.2024.111978_b71","DOI":"10.1109\/CVPR.2017.502"},{"key":"10.1016\/j.knosys.2024.111978_b72","doi-asserted-by":"crossref","first-page":"123","DOI":"10.1016\/j.patrec.2019.11.024","article-title":"Integrating prediction and reconstruction for anomaly detection","volume":"129","author":"Tang","year":"2020","journal-title":"Pattern Recognit. Lett."},{"doi-asserted-by":"crossref","unstructured":"X. Feng, D. Song, Y. Chen, Z. Chen, J. Ni, H. Chen, Convolutional Transformer based Dual Discriminator Generative Adversarial Networks for Video Anomaly Detection, in: ACM Multimedia Conference, MM, 2021, pp. 5546\u20135554.","key":"10.1016\/j.knosys.2024.111978_b73","DOI":"10.1145\/3474085.3475693"},{"key":"10.1016\/j.knosys.2024.111978_b74","doi-asserted-by":"crossref","first-page":"203","DOI":"10.1016\/j.neucom.2022.12.026","article-title":"Dissimilate-and-assimilate strategy for video anomaly detection and localization","volume":"522","author":"Hyun","year":"2023","journal-title":"Neurocomputing"},{"key":"10.1016\/j.knosys.2024.111978_b75","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2023.109335","article-title":"Memory-augmented appearance-motion network for video anomaly detection","volume":"138","author":"Wang","year":"2023","journal-title":"Pattern Recognit."},{"doi-asserted-by":"crossref","unstructured":"W. Liu, W. Luo, Z. Li, P. Zhao, S. Gao, et al., Margin Learning Embedded Prediction for Video Anomaly Detection with A Few Anomalies, in: International Joint Conference on Artificial Intelligence, IJCAI, 2019, pp. 3023\u20133030.","key":"10.1016\/j.knosys.2024.111978_b76","DOI":"10.24963\/ijcai.2019\/419"},{"doi-asserted-by":"crossref","unstructured":"H. Sapkota, Q. Yu, Bayesian nonparametric submodular video partition for robust anomaly detection, in: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2022, pp. 3212\u20133221.","key":"10.1016\/j.knosys.2024.111978_b77","DOI":"10.1109\/CVPR52688.2022.00321"},{"doi-asserted-by":"crossref","unstructured":"L. Sun, Y. Chen, W. Luo, H. Wu, C. Zhang, Discriminative clip mining for video anomaly detection, in: IEEE International Conference on Image Processing, ICIP, 2020, pp. 2121\u20132125.","key":"10.1016\/j.knosys.2024.111978_b78","DOI":"10.1109\/ICIP40778.2020.9191072"},{"key":"10.1016\/j.knosys.2024.111978_b79","doi-asserted-by":"crossref","first-page":"2395","DOI":"10.1109\/TIP.2019.2948286","article-title":"BMAN: bidirectional multi-scale aggregation networks for abnormal event detection","volume":"29","author":"Lee","year":"2019","journal-title":"IEEE Trans. Image Process."},{"doi-asserted-by":"crossref","unstructured":"R.T. Ionescu, F.S. Khan, M.-I. Georgescu, L. Shao, Object-centric auto-encoders and dummy anomalies for abnormal event detection in video, in: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2019, pp. 7842\u20137851.","key":"10.1016\/j.knosys.2024.111978_b80","DOI":"10.1109\/CVPR.2019.00803"},{"key":"10.1016\/j.knosys.2024.111978_b81","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2023.109765","article-title":"Video anomaly detection with NTCN-ML: A novel TCN for multi-instance learning","volume":"143","author":"Shao","year":"2023","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.knosys.2024.111978_b82","doi-asserted-by":"crossref","DOI":"10.1016\/j.cviu.2023.103798","article-title":"End-to-end learning for weakly supervised video anomaly detection using Absorbing Markov Chain","volume":"236","author":"Park","year":"2023","journal-title":"Comput. Vis. Image Underst."},{"key":"10.1016\/j.knosys.2024.111978_b83","first-page":"1","article-title":"Attention-based residual autoencoder for video anomaly detection","author":"Le","year":"2022","journal-title":"Appl. Intell."},{"issue":"14","key":"10.1016\/j.knosys.2024.111978_b84","doi-asserted-by":"crossref","first-page":"3454","DOI":"10.1049\/ipr2.12258","article-title":"Anomaly detection in video sequences: A benchmark and computational model","volume":"15","author":"Wan","year":"2021","journal-title":"IET Image Process."},{"doi-asserted-by":"crossref","unstructured":"B. Ramachandra, M. Jones, Street Scene: A new dataset and evaluation protocol for video anomaly detection, in: IEEE Winter Conference on Applications of Computer Vision, WACV, 2020, pp. 2569\u20132578.","key":"10.1016\/j.knosys.2024.111978_b85","DOI":"10.1109\/WACV45572.2020.9093457"},{"key":"10.1016\/j.knosys.2024.111978_b86","article-title":"Scalable video object segmentation with identification mechanism","author":"Yang","year":"2024","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"9","key":"10.1016\/j.knosys.2024.111978_b87","first-page":"4701","article-title":"Collaborative video object segmentation by multi-scale foreground-background integration","volume":"44","author":"Yang","year":"2021","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"doi-asserted-by":"crossref","unstructured":"X. Pan, P. Li, Z. Yang, H. Zhou, C. Zhou, H. Yang, J. Zhou, Y. Yang, In-n-out generative learning for dense unsupervised video segmentation, in: ACM International Conference on Multimedia, MM, 2022, pp. 1819\u20131827.","key":"10.1016\/j.knosys.2024.111978_b88","DOI":"10.1145\/3503161.3547909"}],"container-title":["Knowledge-Based Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0950705124006129?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0950705124006129?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,10,27]],"date-time":"2024-10-27T16:00:11Z","timestamp":1730044811000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0950705124006129"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,9]]},"references-count":88,"alternative-id":["S0950705124006129"],"URL":"https:\/\/doi.org\/10.1016\/j.knosys.2024.111978","relation":{},"ISSN":["0950-7051"],"issn-type":[{"type":"print","value":"0950-7051"}],"subject":[],"published":{"date-parts":[[2024,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"VPE-WSVAD: Visual prompt exemplars for weakly-supervised video anomaly detection","name":"articletitle","label":"Article Title"},{"value":"Knowledge-Based Systems","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.knosys.2024.111978","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"111978"}}