{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,25]],"date-time":"2024-08-25T14:03:25Z","timestamp":1724594605255},"reference-count":59,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,4,1]],"date-time":"2024-04-01T00:00:00Z","timestamp":1711929600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,4,1]],"date-time":"2024-04-01T00:00:00Z","timestamp":1711929600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,4,1]],"date-time":"2024-04-01T00:00:00Z","timestamp":1711929600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,4,1]],"date-time":"2024-04-01T00:00:00Z","timestamp":1711929600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,4,1]],"date-time":"2024-04-01T00:00:00Z","timestamp":1711929600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,4,1]],"date-time":"2024-04-01T00:00:00Z","timestamp":1711929600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001840","name":"RANN\u00cdS","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001840","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100005632","name":"National Centre for Research and Development","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100005632","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Knowledge-Based Systems"],"published-print":{"date-parts":[[2024,4]]},"DOI":"10.1016\/j.knosys.2024.111564","type":"journal-article","created":{"date-parts":[[2024,2,24]],"date-time":"2024-02-24T03:25:01Z","timestamp":1708745101000},"page":"111564","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":2,"special_numbering":"C","title":["On Memory-Based Precise Calibration of Cost-Efficient NO2 Sensor Using Artificial Intelligence and Global Response Correction"],"prefix":"10.1016","volume":"290","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-9063-2647","authenticated-orcid":false,"given":"Slawomir","family":"Koziel","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2319-6782","authenticated-orcid":false,"given":"Anna","family":"Pietrenko-Dabrowska","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2025-4505","authenticated-orcid":false,"given":"Marek","family":"Wojcikowski","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6159-068X","authenticated-orcid":false,"given":"Bogdan","family":"Pankiewicz","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"4","key":"10.1016\/j.knosys.2024.111564_bib0001","doi-asserted-by":"crossref","first-page":"249","DOI":"10.1097\/MAJ.0b013e31803b900f","article-title":"Outdoor air pollution: nitrogen dioxide, sulfur dioxide, and carbon monoxide health Effects","volume":"333","author":"Chen","year":"2007","journal-title":"American J. Medical Sc."},{"key":"10.1016\/j.knosys.2024.111564_bib0002","doi-asserted-by":"crossref","DOI":"10.1016\/j.scitotenv.2020.140909","article-title":"Assessing NO2-related health effects by non-linear and linear methods on a national level","volume":"744","author":"Zhao","year":"2020","journal-title":"Sc. Total Environment"},{"key":"10.1016\/j.knosys.2024.111564_bib0003","doi-asserted-by":"crossref","first-page":"615","DOI":"10.1016\/j.jenvman.2016.06.039","article-title":"The economic benefits of reducing the levels of nitrogen dioxide (NO2) near primary schools: The case of London","volume":"181","author":"Guerriero","year":"2016","journal-title":"J. Environ. Management"},{"issue":"8","key":"10.1016\/j.knosys.2024.111564_bib0004","doi-asserted-by":"crossref","first-page":"1059","DOI":"10.1111\/j.1365-2222.2011.03776.x","article-title":"Air pollution and airway disease","volume":"41","author":"Kelly","year":"2011","journal-title":"Clinical & Experimental Allergy"},{"issue":"1\u20132","key":"10.1016\/j.knosys.2024.111564_bib0005","first-page":"13","article-title":"Air pollution and health in urban areas","volume":"15","author":"Schwela","year":"2000","journal-title":"Rev. Environmental Health"},{"issue":"104887","key":"10.1016\/j.knosys.2024.111564_bib0006","article-title":"Human exposure to NO2 in school and office indoor environments","volume":"130","author":"Salonen","year":"2019","journal-title":"Environ. Int."},{"issue":"16","key":"10.1016\/j.knosys.2024.111564_bib0007","doi-asserted-by":"crossref","first-page":"2851","DOI":"10.1016\/j.atmosenv.2004.12.041","article-title":"NOx emissions from large point sources: variability in ozone production, resulting health damages and economic costs","volume":"39","author":"Mauzerall","year":"2005","journal-title":"Atmospheric Environment"},{"issue":"3","key":"10.1016\/j.knosys.2024.111564_bib0008","doi-asserted-by":"crossref","first-page":"296","DOI":"10.1111\/j.1465-7287.1999.tb00683.x","article-title":"The Kyoto protocol, cafe standards, and gasoline taxes","volume":"17","author":"Agras","year":"1999","journal-title":"Contemporary Economic Policy"},{"key":"10.1016\/j.knosys.2024.111564_bib0009","article-title":"Air Quality Guidelines: Global Update 2005 : Particulate Matter, Ozone, Nitrogen Dioxide, and Sulfur Dioxide","author":"Organization","year":"2006","journal-title":"World Health Organization"},{"key":"10.1016\/j.knosys.2024.111564_bib0010","series-title":"The economic consequences of outdoor air pollution","year":"2016"},{"key":"10.1016\/j.knosys.2024.111564_bib0011","series-title":"Topical Meeting on Spectroscopy in Support of Atmospheric Measurements (1980), paper TuP17","article-title":"Photofragmentation - laser induced fluorescence detection of NO2","author":"Rodgers","year":"1980"},{"key":"10.1016\/j.knosys.2024.111564_bib0012","series-title":"Encyclopedia of Analytical Chemistry","first-page":"1","article-title":"Air monitoring by differential optical absorption spectroscopy","author":"Platt","year":"2017"},{"issue":"16","key":"10.1016\/j.knosys.2024.111564_bib0013","doi-asserted-by":"crossref","first-page":"2803","DOI":"10.1016\/S1352-2310(01)00078-4","article-title":"Direct measurement of NO2 in the marine atmosphere by laser-induced fluorescence technique","volume":"35","author":"Matsumoto","year":"2001","journal-title":"Atmospheric Environment"},{"key":"10.1016\/j.knosys.2024.111564_bib0014","doi-asserted-by":"crossref","first-page":"565","DOI":"10.1080\/014423500750040627","article-title":"Cavity ring-down spectroscopy: experimental schemes and applications","volume":"19","author":"Berden","year":"2010","journal-title":"Int. Rev. Physical Chemistry"},{"issue":"9","key":"10.1016\/j.knosys.2024.111564_bib0015","doi-asserted-by":"crossref","first-page":"7167","DOI":"10.1109\/TIM.2020.2978596","article-title":"A deep calibration method for low-cost air monitoring sensors with multilevel sequence modeling","volume":"69","author":"Yu","year":"2020","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"10.1016\/j.knosys.2024.111564_bib0016","doi-asserted-by":"crossref","first-page":"2152","DOI":"10.1021\/acs.est.9b06046","article-title":"Incorporating low-cost sensor measurements into high-resolution PM2.5 modeling at a large spatial scale","volume":"54","author":"Bi","year":"2020","journal-title":"Environ. Sci. Technol."},{"key":"10.1016\/j.knosys.2024.111564_bib0017","doi-asserted-by":"crossref","first-page":"293","DOI":"10.1016\/j.envint.2016.12.007","article-title":"Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates?","volume":"99","author":"Castell","year":"2017","journal-title":"Environ. Int."},{"key":"10.1016\/j.knosys.2024.111564_bib0018","doi-asserted-by":"crossref","first-page":"249","DOI":"10.1016\/j.snb.2015.03.031","article-title":"Field calibration of a cluster of low-cost available sensors for air quality monitoring. Part A: Ozone and nitrogen dioxide","volume":"215","author":"Spinelle","year":"2015","journal-title":"Sens. Actuat. B-Chem."},{"key":"10.1016\/j.knosys.2024.111564_bib0019","doi-asserted-by":"crossref","first-page":"1044","DOI":"10.1016\/j.snb.2016.05.089","article-title":"Calibration transfer and drift counteraction in chemical sensor arrays using Direct Standardization","volume":"236","author":"Fonollosa","year":"2016","journal-title":"Sens. Actuat. B-Chem."},{"key":"10.1016\/j.knosys.2024.111564_bib0020","doi-asserted-by":"crossref","first-page":"691","DOI":"10.1016\/j.scitotenv.2017.06.266","article-title":"End-user perspective of low-cost sensors for outdoor air pollution monitoring","volume":"607","author":"Rai","year":"2017","journal-title":"Sci. Total Environ."},{"key":"10.1016\/j.knosys.2024.111564_bib0021","doi-asserted-by":"crossref","first-page":"2979","DOI":"10.5194\/amt-15-2979-2022","article-title":"Long-term behavior and stability of calibration models for NO and NO2 low-cost sensors","volume":"15","author":"Kim","year":"2022","journal-title":"Atmos. Meas. Tech."},{"issue":"113800","key":"10.1016\/j.knosys.2024.111564_bib0022","article-title":"Data reliability and fault diagnostic for air quality monitoring station based on low cost sensors and active redundancy","volume":"223","author":"Poupry","year":"2023","journal-title":"Measurement"},{"issue":"1-3","key":"10.1016\/j.knosys.2024.111564_bib0023","doi-asserted-by":"crossref","first-page":"336","DOI":"10.1016\/S0925-4005(01)00620-7","article-title":"Nanostructured thick-film gas sensors for atmospheric pollutant monitoring: quantitative analysis on field tests","volume":"76","author":"Carotta","year":"2001","journal-title":"Sensors and Actuators B: Chemical"},{"issue":"134996","key":"10.1016\/j.knosys.2024.111564_bib0024","article-title":"Improved deep bidirectional recurrent neural network for learning the cross-sensitivity rules of gas sensor array","volume":"401","author":"Wang","year":"2024","journal-title":"Sensors and Actuators B: Chemical"},{"key":"10.1016\/j.knosys.2024.111564_bib0025","doi-asserted-by":"crossref","first-page":"291","DOI":"10.5194\/amt-11-291-2018","article-title":"A machine learning calibration model using random forests to improve sensor performance for lower-cost air quality monitoring","volume":"11","author":"Zimmerman","year":"2018","journal-title":"Atmos. Meas. Tech."},{"issue":"102","key":"10.1016\/j.knosys.2024.111564_bib0026","article-title":"Enhancement in NO2 sensing properties of SWNTs: A detailed analysis on functionalization of SWNTs with Z-Gly-OH","volume":"34","author":"Gorshkova","year":"2023","journal-title":"J. Mater. Science: Mater. Electron."},{"key":"10.1016\/j.knosys.2024.111564_bib0027","doi-asserted-by":"crossref","first-page":"5281","DOI":"10.5194\/amt-9-5281-2016","article-title":"Community Air Sensor Network (CAIRSENSE) project: evaluation of low-cost sensor performance in a suburban environment in the southeastern United States","volume":"9","author":"Jiao","year":"2016","journal-title":"Atmos. Meas. Tech."},{"key":"10.1016\/j.knosys.2024.111564_bib0028","doi-asserted-by":"crossref","first-page":"85","DOI":"10.1039\/C5FD00201J","article-title":"Evaluating the performance of low cost chemical sensors for air pollution research","volume":"189","author":"Lewis","year":"2016","journal-title":"Faraday Discuss"},{"issue":"256","key":"10.1016\/j.knosys.2024.111564_bib0029","article-title":"Calibrations of low-cost air pollution monitoring sensors for CO, NO2, O3, and SO2","volume":"21","author":"Han","year":"2021","journal-title":"Sensors"},{"key":"10.1016\/j.knosys.2024.111564_bib0030","doi-asserted-by":"crossref","first-page":"3815","DOI":"10.5194\/amt-13-3815-2020","article-title":"Integration and calibration of non-dispersive infrared (NDIR) CO2 low-cost sensors and their operation in a sensor network covering Switzerland","volume":"13","author":"M\u00fcller","year":"2020","journal-title":"Atmos. Meas. Tech."},{"key":"10.1016\/j.knosys.2024.111564_bib0031","doi-asserted-by":"crossref","first-page":"13449","DOI":"10.5194\/acp-16-13449-2016","article-title":"The BeErkeley Atmospheric CO2 Observation Network: Initial evaluation","volume":"16","author":"Shusterman","year":"2016","journal-title":"Atmos. Chem. Phys. Discuss."},{"key":"10.1016\/j.knosys.2024.111564_bib0032","doi-asserted-by":"crossref","first-page":"2683","DOI":"10.5194\/amt-11-2683-2018","article-title":"A UAV-based active AirCore system for measurements of greenhouse gases","volume":"11","author":"Andersen","year":"2018","journal-title":"Atmos. Meas. Tech."},{"key":"10.1016\/j.knosys.2024.111564_bib0033","doi-asserted-by":"crossref","first-page":"1671","DOI":"10.5194\/amt-13-1671-2020","article-title":"Surface flux estimates derived from UAS-based mole fraction measurements by means of a nocturnal boundary layer budget approach","volume":"13","author":"Kunz","year":"2020","journal-title":"Atmos. Meas. Tech."},{"key":"10.1016\/j.knosys.2024.111564_bib0034","doi-asserted-by":"crossref","first-page":"3717","DOI":"10.5194\/amt-11-3717-2018","article-title":"Performance of NO, NO2 low cost sensors and three calibration approaches within a real world application","volume":"11","author":"Bigi","year":"2018","journal-title":"Atmos. Meas. Tech."},{"key":"10.1016\/j.knosys.2024.111564_bib0035","doi-asserted-by":"crossref","first-page":"5637","DOI":"10.5194\/amt-14-5637-2021","article-title":"Machine learning calibration of low-cost NO2 and PM10 sensors: non-linear algorithms and their impact on site transferability","volume":"14","author":"Nowack","year":"2021","journal-title":"Atmosph. Meas. Tech."},{"issue":"1004811","key":"10.1016\/j.knosys.2024.111564_bib0036","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/TIM.2022.3188028","article-title":"Influence of concept drift on metrological performance of low-cost NO2 sensors","volume":"71","author":"D'Elia","year":"2022","journal-title":"IEEE Trans. Instrum. Meas."},{"issue":"13","key":"10.1016\/j.knosys.2024.111564_bib0037","doi-asserted-by":"crossref","first-page":"8631","DOI":"10.1021\/acs.est.1c02653","article-title":"Spatial modeling of daily PM2.5, NO2, and CO concentrations measured by a low-cost sensor network: Comparison of linear, machine learning, and hybrid land use models","volume":"55","author":"Jain","year":"2021","journal-title":"Environ. Sci. Technol."},{"issue":"7977","key":"10.1016\/j.knosys.2024.111564_bib0038","article-title":"Calibration of CO, NO2, and O3 using Airify: A low-cost sensor cluster for air quality monitoring","volume":"21","author":"Ionascu","year":"2021","journal-title":"Sensors"},{"issue":"108810","key":"10.1016\/j.knosys.2024.111564_bib0039","article-title":"Contribution of low-cost sensor measurements to the prediction of PM2.5 levels: A case study in Imperial County, California, USA","volume":"180","author":"Bi","year":"2020","journal-title":"Environmental Research"},{"key":"10.1016\/j.knosys.2024.111564_bib0040","doi-asserted-by":"crossref","first-page":"66","DOI":"10.1016\/j.atmosenv.2019.04.048","article-title":"Calibration of low-cost NO2 sensors in an urban air quality network","volume":"210","author":"van Zoest","year":"2019","journal-title":"Atmospheric Environment"},{"key":"10.1016\/j.knosys.2024.111564_bib0041","series-title":"XVIII AISEM Annual Conf","first-page":"1","article-title":"Dynamic multivariate regression for on-field calibration of high speed air quality chemical multi-sensor systems","author":"De Vito","year":"2015"},{"key":"10.1016\/j.knosys.2024.111564_bib0042","doi-asserted-by":"crossref","first-page":"27283","DOI":"10.3390\/s151027283","article-title":"Quantification method for electrolytic sensors in long-term monitoring of ambient air quality","volume":"15","author":"Masson","year":"2015","journal-title":"Sensors"},{"key":"10.1016\/j.knosys.2024.111564_bib0043","doi-asserted-by":"crossref","first-page":"701","DOI":"10.1016\/j.snb.2016.03.038","article-title":"Dynamic neural network architectures for on field stochastic calibration of indicative low cost air quality sensing systems","volume":"231","author":"Esposito","year":"2016","journal-title":"Sensors and Actuators B: Chemical"},{"issue":"131812","key":"10.1016\/j.knosys.2024.111564_bib0044","article-title":"Self-adaptive temperature and humidity compensation based on improved deep BP neural network for NO2 detection in complex environment","volume":"362","author":"Wang","year":"2022","journal-title":"Sensors and Actuators B: Chemical"},{"key":"10.1016\/j.knosys.2024.111564_bib0045","unstructured":"BeagleBone\u00ae Blue, BeagleBoard, https:\/\/www.beagleboard.org\/boards\/beaglebone-blue."},{"key":"10.1016\/j.knosys.2024.111564_bib0046","unstructured":"SGX-7NO2 Datasheet, Industrial Nitrogen Dioxide (NO2) Sensor\u2019, SGX Sensortech: https:\/\/www.sgxsensortech.com\/content\/uploads\/2021\/10\/DS-0338-SGX-7NO2-datasheet.pdf."},{"key":"10.1016\/j.knosys.2024.111564_bib0047","unstructured":"Four electrode NO2 sensor, SemaTech (7E4-NO2-5) (PN: 057-0400-200), SemeaTech Inc., https:\/\/www.semeatech.com\/uploads\/datasheet\/7series\/057-0400-200_EN.pdf."},{"key":"10.1016\/j.knosys.2024.111564_bib0048","unstructured":"Datasheet MiCS-2714 1107 rev 6, SGX Sensortech, https:\/\/www.sgxsensortech.com\/content\/uploads\/2014\/08\/1107_Datasheet-MiCS-2714.pdf."},{"key":"10.1016\/j.knosys.2024.111564_bib0049","unstructured":"Humidity Sensor BME280, Bosch Sensortec: https:\/\/www.bosch-sensortec.com\/products\/environmental-sensors\/humidity-sensors-bme280\/."},{"key":"10.1016\/j.knosys.2024.111564_bib0050","unstructured":"ARMAG Foundation: Home: https:\/\/armaag.gda.pl\/en\/index.htm."},{"key":"10.1016\/j.knosys.2024.111564_bib0051","series-title":"Multilayer perceptrons","author":"Vang-Mata","year":"2020"},{"key":"10.1016\/j.knosys.2024.111564_bib0052","series-title":"Multi-layer perceptron networks for ordinal data analysis","author":"Dlugosz","year":"2008"},{"issue":"6","key":"10.1016\/j.knosys.2024.111564_bib0053","doi-asserted-by":"crossref","first-page":"989","DOI":"10.1109\/72.329697","article-title":"Training feed-forward networks with the Marquardt algorithm","volume":"5","author":"Hagan","year":"1994","journal-title":"IEEE Trans. Neural Networks"},{"key":"10.1016\/j.knosys.2024.111564_bib0054","series-title":"Recurrent Neural Networks. From Simple to Gated Architectures","author":"Salem","year":"2022"},{"issue":"5","key":"10.1016\/j.knosys.2024.111564_bib0055","article-title":"hackAIR: towards raising awareness about air quality in europe by developing a collective online platform","volume":"7","author":"Kosmidis","year":"2018","journal-title":"Int. J. Geo-Information"},{"key":"10.1016\/j.knosys.2024.111564_bib0056","series-title":"Int. Conf. Modern Circuits and Systems Technologies (MOCAST)","first-page":"1","article-title":"Low cost sensor implementation and evaluation for measuring NO2 and O3 pollutants","author":"Christakis","year":"2020"},{"issue":"1","key":"10.1016\/j.knosys.2024.111564_bib0057","doi-asserted-by":"crossref","first-page":"1","DOI":"10.3390\/electrochem5010001","article-title":"Identification of the safe variation limits for the optimization of the measurements in low-cost electrochemical air quality sensors","volume":"5","author":"Christakis","year":"2024","journal-title":"Electrochem"},{"issue":"8","key":"10.1016\/j.knosys.2024.111564_bib0058","doi-asserted-by":"crossref","DOI":"10.3390\/electronics12081842","article-title":"Air pollution monitoring via wireless sensor networks: the investigation and correction of the aging behavior of electrochemical gaseous pollutant sensors","volume":"12","author":"Christakis","year":"2023","journal-title":"Electronics"},{"issue":"1","key":"10.1016\/j.knosys.2024.111564_bib0059","doi-asserted-by":"crossref","DOI":"10.3390\/electronics13010025","article-title":"Kalman filter scheme for the optimization of low-cost gas sensor measurements","volume":"31","author":"Christakis","year":"2024","journal-title":"Electronics"}],"container-title":["Knowledge-Based Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0950705124001990?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0950705124001990?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,3,22]],"date-time":"2024-03-22T05:17:03Z","timestamp":1711084623000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0950705124001990"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,4]]},"references-count":59,"alternative-id":["S0950705124001990"],"URL":"https:\/\/doi.org\/10.1016\/j.knosys.2024.111564","relation":{},"ISSN":["0950-7051"],"issn-type":[{"value":"0950-7051","type":"print"}],"subject":[],"published":{"date-parts":[[2024,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"On Memory-Based Precise Calibration of Cost-Efficient NO2 Sensor Using Artificial Intelligence and Global Response Correction","name":"articletitle","label":"Article Title"},{"value":"Knowledge-Based Systems","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.knosys.2024.111564","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"111564"}}