{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T06:34:09Z","timestamp":1740119649298,"version":"3.37.3"},"reference-count":51,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["52302444","62176221","62276215","62276216"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Knowledge-Based Systems"],"published-print":{"date-parts":[[2023,12]]},"DOI":"10.1016\/j.knosys.2023.111111","type":"journal-article","created":{"date-parts":[[2023,10,25]],"date-time":"2023-10-25T12:51:07Z","timestamp":1698238267000},"page":"111111","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["Pyramidal temporal frame prediction for efficient anomalous event detection in smart surveillance systems"],"prefix":"10.1016","volume":"282","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-4388-6062","authenticated-orcid":false,"given":"Muhammad Hafeez","family":"Javed","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-7780-104X","authenticated-orcid":false,"given":"Tianrui","family":"Li","sequence":"additional","affiliation":[]},{"given":"Zeng","family":"Yu","sequence":"additional","affiliation":[]},{"given":"Ayyaz","family":"Hussain","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-1816-2273","authenticated-orcid":false,"given":"Taha M.","family":"Rajeh","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-2738-2251","authenticated-orcid":false,"given":"Fan","family":"Zhang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.knosys.2023.111111_b1","first-page":"1","article-title":"Learning anomalous human actions using frames of interest and decoderless deep embedded clustering","author":"Javed","year":"2023","journal-title":"Int. J. Mach. Learn. Cybern."},{"key":"10.1016\/j.knosys.2023.111111_b2","unstructured":"Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu, Daeki Cho, Haifeng Chen, Deep autoencoding gaussian mixture model for unsupervised anomaly detection, in: Proceedings of the International Conference on Learning Representations, 2018."},{"key":"10.1016\/j.knosys.2023.111111_b3","doi-asserted-by":"crossref","unstructured":"Cewu Lu, Jianping Shi, Jiaya Jia, Abnormal event detection at 150 FPS in matlab, in: Proceedings of the IEEE International Conference on Computer Vision, 2013, pp. 2720\u20132727.","DOI":"10.1109\/ICCV.2013.338"},{"key":"10.1016\/j.knosys.2023.111111_b4","doi-asserted-by":"crossref","unstructured":"Chong Zhou, Randy C. Paffenroth, Anomaly detection with robust deep autoencoders, in: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017, pp. 665\u2013674.","DOI":"10.1145\/3097983.3098052"},{"issue":"6","key":"10.1016\/j.knosys.2023.111111_b5","doi-asserted-by":"crossref","first-page":"2282","DOI":"10.1109\/TNNLS.2022.3162123","article-title":"Editorial deep learning for anomaly detection","volume":"33","author":"Pang","year":"2022","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"6","key":"10.1016\/j.knosys.2023.111111_b6","doi-asserted-by":"crossref","first-page":"2301","DOI":"10.1109\/TNNLS.2021.3083152","article-title":"Robust unsupervised video anomaly detection by multipath frame prediction","volume":"33","author":"Wang","year":"2021","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.knosys.2023.111111_b7","first-page":"1","article-title":"Attention-based framework for weakly supervised video anomaly detection","author":"Ma","year":"2022","journal-title":"J. Supercomput."},{"key":"10.1016\/j.knosys.2023.111111_b8","unstructured":"Jia-Chang Feng, Fa-Ting Hong, Wei-Shi Zheng, Mist: Multiple instance self-training frameworks for video anomaly detection, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 14009\u201314018."},{"issue":"2","key":"10.1016\/j.knosys.2023.111111_b9","doi-asserted-by":"crossref","first-page":"688","DOI":"10.1109\/TCSVT.2020.2987141","article-title":"Motion-aware feature enhancement network for video prediction","volume":"31","author":"Lin","year":"2020","journal-title":"IEEE Trans. Circuits Syst. Video Technol."},{"key":"10.1016\/j.knosys.2023.111111_b10","unstructured":"Yunbo Wang, Lu Jiang, Ming-Hsuan Yang, Li-Jia Li, Mingsheng Long, Li Fei-Fei, Eidetic 3D LSTM: A model for video prediction and beyond, in: Proceedings of the International Conference on Learning Representations, 2019."},{"key":"10.1016\/j.knosys.2023.111111_b11","first-page":"26950","article-title":"MAU: A motion-aware unit for video prediction and beyond","volume":"34","author":"Chang","year":"2021","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.knosys.2023.111111_b12","doi-asserted-by":"crossref","DOI":"10.1016\/j.imavis.2022.104612","article-title":"Video prediction by efficient transformers","volume":"130","author":"Ye","year":"2023","journal-title":"Image Vis. Comput."},{"key":"10.1016\/j.knosys.2023.111111_b13","article-title":"Deep learning for precipitation nowcasting: A benchmark and a new model","volume":"30","author":"Shi","year":"2017","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.knosys.2023.111111_b14","unstructured":"Zhangyang Gao, Cheng Tan, Lirong Wu, Stan Z. Li, SIMVP: Simpler yet better video prediction, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 3170\u20133180."},{"issue":"18","key":"10.1016\/j.knosys.2023.111111_b15","doi-asserted-by":"crossref","first-page":"2969","DOI":"10.3390\/electronics11182969","article-title":"Pyramidal predictive network: A model for visual-frame prediction based on predictive coding theory","volume":"11","author":"Ling","year":"2022","journal-title":"Electronics"},{"key":"10.1016\/j.knosys.2023.111111_b16","doi-asserted-by":"crossref","DOI":"10.1109\/TNNLS.2023.3240857","article-title":"PreCNet: Next-frame video prediction based on predictive coding","author":"Straka","year":"2023","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.knosys.2023.111111_b17","first-page":"1","article-title":"Parallel spatio-temporal attention-based TCN for multivariate time series prediction","author":"Fan","year":"2021","journal-title":"Neural Comput. Appl."},{"key":"10.1016\/j.knosys.2023.111111_b18","doi-asserted-by":"crossref","unstructured":"Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, Oliver Wang, The unreasonable effectiveness of deep features as a perceptual metric, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 586\u2013595.","DOI":"10.1109\/CVPR.2018.00068"},{"key":"10.1016\/j.knosys.2023.111111_b19","article-title":"Efficient driver anomaly detection via conditional temporal proposal and classification network","author":"Su","year":"2022","journal-title":"IEEE Trans. Comput. Soc. Syst."},{"key":"10.1016\/j.knosys.2023.111111_b20","first-page":"1","article-title":"Leveraging power consumption for anomaly detection on IoT devices in smart homes","author":"Nimmy","year":"2022","journal-title":"J. Ambient Intell. Humaniz. Comput."},{"key":"10.1016\/j.knosys.2023.111111_b21","doi-asserted-by":"crossref","unstructured":"Dong Gong, Lingqiao Liu, Vuong Le, Budhaditya Saha, Moussa Reda Mansour, Svetha Venkatesh, Anton van den Hengel, Memorizing normality to detect anomaly: Memory-augmented deep autoencoder for unsupervised anomaly detection, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, 2019, pp. 1705\u20131714.","DOI":"10.1109\/ICCV.2019.00179"},{"key":"10.1016\/j.knosys.2023.111111_b22","series-title":"Proceedings of the International Conference on Machine Learning","first-page":"4393","article-title":"Deep one-class classification","author":"Ruff","year":"2018"},{"key":"10.1016\/j.knosys.2023.111111_b23","doi-asserted-by":"crossref","DOI":"10.1016\/j.sigpro.2021.108197","article-title":"How to introduce expert feedback in one-class support vector machines for anomaly detection?","volume":"188","author":"Lesouple","year":"2021","journal-title":"Signal Process."},{"key":"10.1016\/j.knosys.2023.111111_b24","first-page":"32854","article-title":"AnoShift: A distribution shift benchmark for unsupervised anomaly detection","volume":"35","author":"Dragoi","year":"2022","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.knosys.2023.111111_b25","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2023.110725","article-title":"Robust anomaly detection for multivariate time series through temporal GCNs and attention-based VAE","author":"Shi","year":"2023","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.knosys.2023.111111_b26","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2023.110611","article-title":"Two-stage reverse knowledge distillation incorporated and Self-Supervised Masking strategy for industrial anomaly detection","volume":"273","author":"Tong","year":"2023","journal-title":"Knowl.-Based Syst."},{"issue":"1","key":"10.1016\/j.knosys.2023.111111_b27","doi-asserted-by":"crossref","first-page":"679","DOI":"10.1109\/TCYB.2022.3175771","article-title":"Learning tensor low-rank representation for hyperspectral anomaly detection","volume":"53","author":"Wang","year":"2022","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.knosys.2023.111111_b28","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2021.108213","article-title":"Video anomaly detection with spatio-temporal dissociation","volume":"122","author":"Chang","year":"2022","journal-title":"Pattern Recognit."},{"issue":"194101","key":"10.1016\/j.knosys.2023.111111_b29","first-page":"1","article-title":"Reverse erasure guided spatio-temporal autoencoder with compact feature representation for video anomaly detection","volume":"65","author":"Zhong","year":"2022","journal-title":"Inform. Sci."},{"key":"10.1016\/j.knosys.2023.111111_b30","article-title":"AI-Empowered trajectory anomaly detection and classification in 6G-V2X","author":"Raja","year":"2022","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"issue":"1","key":"10.1016\/j.knosys.2023.111111_b31","first-page":"273","article-title":"Label independent memory for semi-supervised few-shot video classification","volume":"44","author":"Zhu","year":"2020","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.knosys.2023.111111_b32","doi-asserted-by":"crossref","unstructured":"Wen Liu, Weixin Luo, Dongze Lian, Shenghua Gao, Future frame prediction for anomaly detection\u2013a new baseline, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 6536\u20136545.","DOI":"10.1109\/CVPR.2018.00684"},{"key":"10.1016\/j.knosys.2023.111111_b33","series-title":"Proceedings of the IEEE International Conference on Multimedia and Expo","first-page":"1","article-title":"Weakly supervised video anomaly detection via center-guided discriminative learning","author":"Wan","year":"2020"},{"key":"10.1016\/j.knosys.2023.111111_b34","series-title":"Proceedings of the Computer Vision\u2013ECCV 2020: 16th European Conference, Glasgow, UK, August 23\u201328, 2020, Proceedings, Part XXII, Vol. 16","first-page":"358","article-title":"Claws: Clustering assisted weakly supervised learning with normalcy suppression for anomalous event detection","author":"Zaheer","year":"2020"},{"key":"10.1016\/j.knosys.2023.111111_b35","doi-asserted-by":"crossref","unstructured":"Waqas Sultani, Chen Chen, Mubarak Shah, Real-world anomaly detection in surveillance videos, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 6479\u20136488.","DOI":"10.1109\/CVPR.2018.00678"},{"key":"10.1016\/j.knosys.2023.111111_b36","doi-asserted-by":"crossref","unstructured":"Jia-Xing Zhong, Nannan Li, Weijie Kong, Shan Liu, Thomas H Li, Ge Li, Graph convolutional label noise cleaner: Train a plug-and-play action classifier for anomaly detection, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 1237\u20131246.","DOI":"10.1109\/CVPR.2019.00133"},{"key":"10.1016\/j.knosys.2023.111111_b37","doi-asserted-by":"crossref","first-page":"50","DOI":"10.1016\/j.patrec.2021.01.031","article-title":"Iterative weak\/self-supervised classification framework for abnormal events detection","volume":"145","author":"Degardin","year":"2021","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.knosys.2023.111111_b38","series-title":"2022 IEEE 38th International Conference on Data Engineering","first-page":"1342","article-title":"Anomaly detection in time series with robust variational quasi-recurrent autoencoders","author":"Kieu","year":"2022"},{"issue":"3","key":"10.1016\/j.knosys.2023.111111_b39","doi-asserted-by":"crossref","first-page":"402","DOI":"10.1109\/JPROC.2020.2970615","article-title":"Adversarial learning targeting deep neural network classification: A comprehensive review of defenses against attacks","volume":"108","author":"Miller","year":"2020","journal-title":"Proc. IEEE"},{"issue":"10","key":"10.1016\/j.knosys.2023.111111_b40","doi-asserted-by":"crossref","first-page":"10735","DOI":"10.1109\/TIE.2022.3151960","article-title":"DSTED: A denoising spatial\u2013temporal encoder\u2013decoder framework for multistep prediction of burn-through point in sintering process","volume":"69","author":"Yan","year":"2022","journal-title":"IEEE Trans. Ind. Electron."},{"key":"10.1016\/j.knosys.2023.111111_b41","doi-asserted-by":"crossref","first-page":"219","DOI":"10.1016\/j.conb.2017.08.010","article-title":"With or without you: Predictive coding and Bayesian inference in the brain","volume":"46","author":"Aitchison","year":"2017","journal-title":"Curr. Opin. Neurobiol."},{"issue":"1","key":"10.1016\/j.knosys.2023.111111_b42","doi-asserted-by":"crossref","first-page":"43573","DOI":"10.1038\/srep43573","article-title":"The rhythms of predictive coding? Pre-stimulus phase modulates the influence of shape perception on luminance judgments","volume":"7","author":"Han","year":"2017","journal-title":"Sci. Rep."},{"issue":"4","key":"10.1016\/j.knosys.2023.111111_b43","doi-asserted-by":"crossref","first-page":"231","DOI":"10.1038\/s41583-020-0275-5","article-title":"Forms of prediction in the nervous system","volume":"21","author":"Teufel","year":"2020","journal-title":"Nat. Rev. Neurosci."},{"issue":"6","key":"10.1016\/j.knosys.2023.111111_b44","doi-asserted-by":"crossref","first-page":"1185","DOI":"10.1109\/JPROC.2017.2697118","article-title":"Hamming window to the digital world","volume":"105","author":"Bojkovic","year":"2017","journal-title":"Proc. IEEE"},{"key":"10.1016\/j.knosys.2023.111111_b45","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2022.109348","article-title":"Attention-based anomaly detection in multi-view surveillance videos","volume":"252","author":"Li","year":"2022","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.knosys.2023.111111_b46","article-title":"Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks","volume":"32","author":"Lu","year":"2019","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.knosys.2023.111111_b47","doi-asserted-by":"crossref","unstructured":"Weixin Luo, Wen Liu, Shenghua Gao, A revisit of sparse coding based anomaly detection in stacked rnn framework, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 341\u2013349.","DOI":"10.1109\/ICCV.2017.45"},{"issue":"8","key":"10.1016\/j.knosys.2023.111111_b48","doi-asserted-by":"crossref","first-page":"5427","DOI":"10.1109\/TCSVT.2022.3148392","article-title":"Influence-aware attention networks for anomaly detection in surveillance videos","volume":"32","author":"Zhang","year":"2022","journal-title":"IEEE Trans. Circuits Syst. Video Technol."},{"issue":"12","key":"10.1016\/j.knosys.2023.111111_b49","doi-asserted-by":"crossref","first-page":"4639","DOI":"10.1109\/TCSVT.2019.2962229","article-title":"Attention-driven loss for anomaly detection in video surveillance","volume":"30","author":"Zhou","year":"2020","journal-title":"IEEE Trans. Circuits Syst. Video Technol."},{"key":"10.1016\/j.knosys.2023.111111_b50","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2022.109456","article-title":"Intelligent dual stream CNN and echo state network for anomaly detection","volume":"253","author":"Ullah","year":"2022","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.knosys.2023.111111_b51","series-title":"Proceedings of the International Conference on Control, Automation and Information Sciences","first-page":"1","article-title":"3D resnet with ranking loss function for abnormal activity detection in videos","author":"Dubey","year":"2019"}],"container-title":["Knowledge-Based Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0950705123008614?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0950705123008614?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,10,31]],"date-time":"2024-10-31T20:18:27Z","timestamp":1730405907000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0950705123008614"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,12]]},"references-count":51,"alternative-id":["S0950705123008614"],"URL":"https:\/\/doi.org\/10.1016\/j.knosys.2023.111111","relation":{},"ISSN":["0950-7051"],"issn-type":[{"type":"print","value":"0950-7051"}],"subject":[],"published":{"date-parts":[[2023,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Pyramidal temporal frame prediction for efficient anomalous event detection in smart surveillance systems","name":"articletitle","label":"Article Title"},{"value":"Knowledge-Based Systems","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.knosys.2023.111111","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"111111"}}