{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,31]],"date-time":"2024-10-31T20:10:01Z","timestamp":1730405401566,"version":"3.28.0"},"reference-count":45,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100004032","name":"Jilin University","doi-asserted-by":"publisher","award":["62276060"],"id":[{"id":"10.13039\/501100004032","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Knowledge-Based Systems"],"published-print":{"date-parts":[[2023,12]]},"DOI":"10.1016\/j.knosys.2023.111109","type":"journal-article","created":{"date-parts":[[2023,10,25]],"date-time":"2023-10-25T06:48:36Z","timestamp":1698216516000},"page":"111109","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":3,"special_numbering":"C","title":["Binary golden eagle optimizer combined with initialization of feature number subspace for feature selection"],"prefix":"10.1016","volume":"282","author":[{"given":"Xinkai","family":"Yang","sequence":"first","affiliation":[]},{"given":"Luhan","family":"Zhen","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1648-8138","authenticated-orcid":false,"given":"Zhanshan","family":"Li","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.knosys.2023.111109_b1","doi-asserted-by":"crossref","DOI":"10.1109\/TAI.2021.3105084","article-title":"Preserving similarity and staring decisis for feature selection","author":"Gao","year":"2021","journal-title":"IEEE Trans. Artif. Intell."},{"issue":"2","key":"10.1016\/j.knosys.2023.111109_b2","first-page":"225","article-title":"Feature selection using an improved chi-square for arabic text classification","volume":"32","author":"Bahassine","year":"2020","journal-title":"J. King Saud Univ.-Comput. Inf. Sci."},{"issue":"10","key":"10.1016\/j.knosys.2023.111109_b3","doi-asserted-by":"crossref","first-page":"6294","DOI":"10.1016\/j.jfranklin.2020.03.005","article-title":"Feature selection for multivariate contribution analysis in fault detection and isolation","volume":"357","author":"Rauber","year":"2020","journal-title":"J. Franklin Inst. B"},{"issue":"4","key":"10.1016\/j.knosys.2023.111109_b4","doi-asserted-by":"crossref","first-page":"2619","DOI":"10.1007\/s13369-020-04380-2","article-title":"An efficient filter-based feature selection model to identify significant features from high-dimensional microarray data","volume":"45","author":"Deepak Raj","year":"2020","journal-title":"Arab. J. Sci. Eng."},{"key":"10.1016\/j.knosys.2023.111109_b5","series-title":"Data Classification: Algorithms and Applications","first-page":"37","article-title":"Feature selection for classification: A review","author":"Tang","year":"2014"},{"key":"10.1016\/j.knosys.2023.111109_b6","doi-asserted-by":"crossref","first-page":"328","DOI":"10.1016\/j.patcog.2018.02.020","article-title":"Class-specific mutual information variation for feature selection","volume":"79","author":"Gao","year":"2018","journal-title":"Pattern Recognit."},{"issue":"3","key":"10.1016\/j.knosys.2023.111109_b7","doi-asserted-by":"crossref","first-page":"703","DOI":"10.1109\/JAS.2019.1911447","article-title":"An embedded feature selection method for imbalanced data classification","volume":"6","author":"Liu","year":"2019","journal-title":"IEEE\/CAA J. Autom. Sin."},{"issue":"Mar","key":"10.1016\/j.knosys.2023.111109_b8","first-page":"1157","article-title":"An introduction to variable and feature selection","volume":"3","author":"Guyon","year":"2003","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.knosys.2023.111109_b9","doi-asserted-by":"crossref","first-page":"2","DOI":"10.1016\/j.swevo.2015.06.002","article-title":"A survey on evolutionary algorithms dynamics and its complexity\u2013mutual relations, past, present and future","volume":"25","author":"Zelinka","year":"2015","journal-title":"Swarm Evol. Comput."},{"key":"10.1016\/j.knosys.2023.111109_b10","doi-asserted-by":"crossref","DOI":"10.1016\/j.cie.2020.107050","article-title":"Golden eagle optimizer: A nature-inspired metaheuristic algorithm","volume":"152","author":"Mohammadi-Balani","year":"2021","journal-title":"Comput. Ind. Eng."},{"key":"10.1016\/j.knosys.2023.111109_b11","series-title":"2021 9th International Conference on Reliability, Infocom Technologies and Optimization","first-page":"1","article-title":"Efficient feature selection method for histopathological images using modified golden eagle optimization algorithm","author":"Vijh","year":"2021"},{"key":"10.1016\/j.knosys.2023.111109_b12","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2022.108771","article-title":"Binary golden eagle optimizer with time-varying flight length for feature selection","volume":"247","author":"Eluri","year":"2022","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.knosys.2023.111109_b13","first-page":"1","article-title":"Performance assessment of the metaheuristic optimization algorithms: An exhaustive review","author":"Hanif Halim","year":"2020","journal-title":"Artif. Intell. Rev."},{"key":"10.1016\/j.knosys.2023.111109_b14","doi-asserted-by":"crossref","first-page":"192","DOI":"10.1016\/j.cie.2018.12.033","article-title":"Find-fix-finish-exploit-analyze (f3ea) meta-heuristic algorithm: An effective algorithm with new evolutionary operators for global optimization","volume":"128","author":"Kashan","year":"2019","journal-title":"Comput. Ind. Eng."},{"key":"10.1016\/j.knosys.2023.111109_b15","series-title":"Application of Genetic Algorithm\u2013Pls for Feature Selection in Spectral Data Sets, Vol. 14, no. 5-6","first-page":"643","author":"Leardi","year":"2000"},{"key":"10.1016\/j.knosys.2023.111109_b16","doi-asserted-by":"crossref","DOI":"10.1109\/TEVC.2010.2059031","article-title":"Differential evolution: A survey of the state-of-the-art","author":"Das","year":"2011","journal-title":"Evol. Comput. IEEE Trans. on"},{"key":"10.1016\/j.knosys.2023.111109_b17","series-title":"Proceedings of ICNN\u201995-International Conference on Neural Networks, Vol. 4","first-page":"1942","article-title":"Particle swarm optimization","author":"Kennedy","year":"1995"},{"issue":"1","key":"10.1016\/j.knosys.2023.111109_b18","doi-asserted-by":"crossref","first-page":"67","DOI":"10.1109\/4235.585893","article-title":"No free lunch theorems for optimization","volume":"1","author":"Wolpert","year":"1997","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.knosys.2023.111109_b19","doi-asserted-by":"crossref","first-page":"313","DOI":"10.1016\/j.eswa.2016.02.016","article-title":"Swarm intelligence based fuzzy routing protocol for clustered wireless sensor networks","volume":"55","author":"Zahedi","year":"2016","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.knosys.2023.111109_b20","doi-asserted-by":"crossref","first-page":"48","DOI":"10.1016\/j.advengsoft.2017.05.014","article-title":"Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications","volume":"114","author":"Dhiman","year":"2017","journal-title":"Adv. Eng. Softw."},{"key":"10.1016\/j.knosys.2023.111109_b21","doi-asserted-by":"crossref","first-page":"20","DOI":"10.1016\/j.knosys.2018.06.001","article-title":"Emperor penguin optimizer: A bio-inspired algorithm for engineering problems","volume":"159","author":"Dhiman","year":"2018","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.knosys.2023.111109_b22","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2020.113377","article-title":"Marine predators algorithm: A nature-inspired metaheuristic","volume":"152","author":"Faramarzi","year":"2020","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.knosys.2023.111109_b23","doi-asserted-by":"crossref","DOI":"10.1016\/j.asoc.2021.107504","article-title":"Improved tunicate swarm algorithm: Solving the dynamic economic emission dispatch problems","volume":"108","author":"Li","year":"2021","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.knosys.2023.111109_b24","doi-asserted-by":"crossref","first-page":"56066","DOI":"10.1109\/ACCESS.2021.3072336","article-title":"An improved tunicate swarm algorithm for global optimization and image segmentation","volume":"9","author":"Houssein","year":"2021","journal-title":"IEEE Access"},{"key":"10.1016\/j.knosys.2023.111109_b25","first-page":"1","article-title":"Marine predators algorithm for optimal allocation of active and reactive power resources in distribution networks","author":"Eid","year":"2021","journal-title":"Neural Comput. Appl."},{"issue":"1","key":"10.1016\/j.knosys.2023.111109_b26","doi-asserted-by":"crossref","first-page":"29","DOI":"10.1016\/j.compbiolchem.2007.09.005","article-title":"Improved binary PSO for feature selection using gene expression data","volume":"32","author":"Chuang","year":"2008","journal-title":"Comput. Biol. Chem."},{"key":"10.1016\/j.knosys.2023.111109_b27","series-title":"Third International Workshop on Advanced Computational Intelligence","first-page":"91","article-title":"A real time idss based on artificial bee colony-support vector machine algorithm","author":"Wang","year":"2010"},{"key":"10.1016\/j.knosys.2023.111109_b28","series-title":"2012 25th SIBGRAPI Conference on Graphics, Patterns and Images","first-page":"291","article-title":"Bba: A binary bat algorithm for feature selection","author":"Nakamura","year":"2012"},{"key":"10.1016\/j.knosys.2023.111109_b29","series-title":"2017 International Conference on New Trends in Computing Sciences","first-page":"12","article-title":"Binary dragonfly algorithm for feature selection","author":"Mafarja","year":"2017"},{"key":"10.1016\/j.knosys.2023.111109_b30","series-title":"2018 IEEE Congress on Evolutionary Computation","first-page":"1","article-title":"A V-shaped binary crow search algorithm for feature selection","author":"Souza","year":"2018"},{"key":"10.1016\/j.knosys.2023.111109_b31","doi-asserted-by":"crossref","first-page":"147","DOI":"10.1016\/j.eswa.2018.08.051","article-title":"Binary butterfly optimization approaches for feature selection","volume":"116","author":"Arora","year":"2019","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.knosys.2023.111109_b32","article-title":"Binary coyote optimization algorithm for feature selection","volume":"107","author":"de Souza","year":"2020","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.knosys.2023.111109_b33","first-page":"1","article-title":"The monarch butterfly optimization algorithm for solving feature selection problems","author":"Alweshah","year":"2020","journal-title":"Neural Comput. Appl."},{"key":"10.1016\/j.knosys.2023.111109_b34","doi-asserted-by":"crossref","DOI":"10.1016\/j.cie.2020.107078","article-title":"An efficient binary slime mould algorithm integrated with a novel attacking-feeding strategy for feature selection","volume":"153","author":"Abdel-Basset","year":"2021","journal-title":"Comput. Ind. Eng."},{"issue":"1","key":"10.1016\/j.knosys.2023.111109_b35","doi-asserted-by":"crossref","first-page":"593","DOI":"10.1007\/s10462-020-09860-3","article-title":"A hybrid Harris Hawks Optimization Algorithm with simulated annealing for feature selection","volume":"54","author":"Abdel-Basset","year":"2021","journal-title":"Artif. Intell. Rev."},{"key":"10.1016\/j.knosys.2023.111109_b36","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2021.107933","article-title":"A two-stage hybrid ant colony optimization for high-dimensional feature selection","volume":"116","author":"Ma","year":"2021","journal-title":"Pattern Recognit."},{"issue":"1","key":"10.1016\/j.knosys.2023.111109_b37","doi-asserted-by":"crossref","first-page":"1","DOI":"10.32604\/jbd.2021.010364","article-title":"A new population initialization of particle swarm optimization method based on pca for feature selection","volume":"3","author":"Wang","year":"2021","journal-title":"J. Big Data"},{"key":"10.1016\/j.knosys.2023.111109_b38","doi-asserted-by":"crossref","unstructured":"Timea Bezdan, Dusan Cvetnic, Luka Gajic, Miodrag Zivkovic, Ivana Strumberger, Nebojsa Bacanin, Feature selection by firefly algorithm with improved initialization strategy, in: 7th Conference on the Engineering of Computer Based Systems, 2021, pp. 1\u20138.","DOI":"10.1145\/3459960.3459974"},{"key":"10.1016\/j.knosys.2023.111109_b39","doi-asserted-by":"crossref","first-page":"353","DOI":"10.1023\/A:1020499411651","article-title":"Generalized hamming distance","volume":"5","author":"Bookstein","year":"2002","journal-title":"Inf. Retr."},{"key":"10.1016\/j.knosys.2023.111109_b40","series-title":"2008 19th International Conference on Pattern Recognition","first-page":"1","article-title":"Differential evolution based feature subset selection","author":"Khushaba","year":"2008"},{"year":"2007","series-title":"UCI machine learning repository","author":"Asuncion","key":"10.1016\/j.knosys.2023.111109_b41"},{"year":"2019","series-title":"Arizona State University","key":"10.1016\/j.knosys.2023.111109_b42"},{"issue":"3","key":"10.1016\/j.knosys.2023.111109_b43","doi-asserted-by":"crossref","first-page":"175","DOI":"10.1080\/00031305.1992.10475879","article-title":"An introduction to kernel and nearest-neighbor nonparametric regression","volume":"46","author":"Altman","year":"1992","journal-title":"Amer. Statist."},{"issue":"2","key":"10.1016\/j.knosys.2023.111109_b44","doi-asserted-by":"crossref","first-page":"83","DOI":"10.1007\/BF02985802","article-title":"The elements of statistical learning: Data mining, inference and prediction","volume":"27","author":"Franklin","year":"2005","journal-title":"Math. Intelligencer"},{"issue":"1","key":"10.1016\/j.knosys.2023.111109_b45","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1016\/j.swevo.2011.02.002","article-title":"A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms","volume":"1","author":"Derrac","year":"2011","journal-title":"Swarm Evol. Comput."}],"container-title":["Knowledge-Based Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0950705123008596?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0950705123008596?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,10,31]],"date-time":"2024-10-31T19:45:01Z","timestamp":1730403901000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0950705123008596"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,12]]},"references-count":45,"alternative-id":["S0950705123008596"],"URL":"https:\/\/doi.org\/10.1016\/j.knosys.2023.111109","relation":{},"ISSN":["0950-7051"],"issn-type":[{"type":"print","value":"0950-7051"}],"subject":[],"published":{"date-parts":[[2023,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Binary golden eagle optimizer combined with initialization of feature number subspace for feature selection","name":"articletitle","label":"Article Title"},{"value":"Knowledge-Based Systems","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.knosys.2023.111109","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"111109"}}