{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,11]],"date-time":"2025-04-11T13:26:32Z","timestamp":1744377992773},"reference-count":39,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Knowledge-Based Systems"],"published-print":{"date-parts":[[2023,11]]},"DOI":"10.1016\/j.knosys.2023.110984","type":"journal-article","created":{"date-parts":[[2023,9,16]],"date-time":"2023-09-16T02:26:41Z","timestamp":1694831201000},"page":"110984","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":41,"special_numbering":"C","title":["Intelligent fault diagnosis of worm gearbox based on adaptive CNN using amended gorilla troop optimization with quantum gate mutation strategy"],"prefix":"10.1016","volume":"280","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-5160-9647","authenticated-orcid":false,"given":"Govind","family":"Vashishtha","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0367-4193","authenticated-orcid":false,"given":"Sumika","family":"Chauhan","sequence":"additional","affiliation":[]},{"given":"Surinder","family":"Kumar","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3955-8282","authenticated-orcid":false,"given":"Rajesh","family":"Kumar","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4781-9972","authenticated-orcid":false,"given":"Radoslaw","family":"Zimroz","sequence":"additional","affiliation":[]},{"given":"Anil","family":"Kumar","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.knosys.2023.110984_b1","doi-asserted-by":"crossref","DOI":"10.1016\/j.ijmecsci.2023.108509","article-title":"Sensible multiscale symbol dynamic entropy for fault diagnosis of bearing","volume":"256","author":"Tan","year":"2023","journal-title":"Int. J. Mech. Sci."},{"key":"10.1016\/j.knosys.2023.110984_b2","doi-asserted-by":"crossref","DOI":"10.1016\/j.ymssp.2023.110098","article-title":"A knowledge dynamic matching unit-guided multi-source domain adaptation network with attention mechanism for rolling bearing fault diagnosis","volume":"189","author":"Wu","year":"2023","journal-title":"Mech. Syst. Signal Process."},{"key":"10.1016\/j.knosys.2023.110984_b3","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2023.120066","article-title":"A novel deep clustering network using multi-representation autoencoder and adversarial learning for large cross-domain fault diagnosis of rolling bearings","volume":"225","author":"Wen","year":"2023","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.knosys.2023.110984_b4","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s10921-018-0543-8","article-title":"Role of signal processing, modeling and decision making in the diagnosis of rolling element bearing defect: A review","volume":"38","author":"Kumar","year":"2019","journal-title":"J. Nondestruct. Eval."},{"key":"10.1016\/j.knosys.2023.110984_b5","doi-asserted-by":"crossref","first-page":"122","DOI":"10.1016\/j.apenergy.2017.04.048","article-title":"Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: A review","volume":"198","author":"Tahan","year":"2017","journal-title":"Appl. Energy"},{"key":"10.1016\/j.knosys.2023.110984_b6","first-page":"169","article-title":"A review on data-driven fault severity assessment in rolling bearings","volume":"99","author":"Valente\u00a0de Oliveira","year":"2017","journal-title":"Mech. Syst. Signal Process."},{"key":"10.1016\/j.knosys.2023.110984_b7","doi-asserted-by":"crossref","DOI":"10.1016\/j.ymssp.2019.106587","article-title":"Applications of machine learning to machine fault diagnosis: A review and roadmap","volume":"138","author":"Lei","year":"2020","journal-title":"Mech. Syst. Signal Process."},{"key":"10.1016\/j.knosys.2023.110984_b8","doi-asserted-by":"crossref","first-page":"559","DOI":"10.1016\/j.isatra.2022.07.020","article-title":"Intelligent fault diagnosis of helical gearboxes with compressive sensing based non-contact measurements","volume":"133","author":"Tang","year":"2023","journal-title":"ISA Trans."},{"key":"10.1016\/j.knosys.2023.110984_b9","doi-asserted-by":"crossref","DOI":"10.1016\/j.measurement.2022.112318","article-title":"Intelligent fault diagnosis of gearbox based on differential continuous wavelet transform-parallel multi-block fusion residual network","volume":"206","author":"Meng","year":"2023","journal-title":"Measurement"},{"key":"10.1016\/j.knosys.2023.110984_b10","doi-asserted-by":"crossref","DOI":"10.1016\/j.measurement.2020.107735","article-title":"Latest developments in gear defect diagnosis and prognosis: A review","volume":"158","author":"Kumar","year":"2020","journal-title":"Measurement"},{"key":"10.1016\/j.knosys.2023.110984_b11","doi-asserted-by":"crossref","DOI":"10.1088\/1361-6501\/abdce0","article-title":"Diagnosis of an incipient defect in a worm gearbox using minimum entropy deconvolution and local cepstrum","volume":"32","author":"Kumar","year":"2021","journal-title":"Meas. Sci. Technol."},{"key":"10.1016\/j.knosys.2023.110984_b12","doi-asserted-by":"crossref","DOI":"10.1007\/s42417-022-00807-2","article-title":"L-moments ratio-based condition indicators for diagnosis of fault in a worm gearbox","author":"Kumar","year":"2023","journal-title":"J. Vib. Eng. Technol."},{"key":"10.1016\/j.knosys.2023.110984_b13","doi-asserted-by":"crossref","DOI":"10.1016\/j.ymssp.2023.110130","article-title":"Machine learning based condition monitoring for gear transmission systems using data generated by optimal multibody dynamics models","volume":"190","author":"Koutsoupakis","year":"2023","journal-title":"Mech. Syst. Signal Process."},{"key":"10.1016\/j.knosys.2023.110984_b14","doi-asserted-by":"crossref","DOI":"10.1088\/1361-6501\/abeea7","article-title":"An effective health indicator for the pelton wheel using a levy flight mutated genetic algorithm","volume":"32","author":"Vashishtha","year":"2021","journal-title":"Meas. Sci. Technol."},{"key":"10.1016\/j.knosys.2023.110984_b15","first-page":"1","article-title":"Machinery fault diagnosis based on domain adaptation to bridge the gap between simulation and measured signals","volume":"71","author":"Lou","year":"2022","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"10.1016\/j.knosys.2023.110984_b16","doi-asserted-by":"crossref","first-page":"6248","DOI":"10.1109\/TIE.2020.2994868","article-title":"Fault diagnosis of an autonomous vehicle with an improved SVM algorithm subject to unbalanced datasets","volume":"68","author":"Shi","year":"2021","journal-title":"IEEE Trans. Ind. Electron."},{"key":"10.1016\/j.knosys.2023.110984_b17","doi-asserted-by":"crossref","first-page":"3798","DOI":"10.1109\/TMECH.2021.3132459","article-title":"Fault detection in gears using fault samples enlarged by a combination of numerical simulation and a generative adversarial network","volume":"27","author":"Gao","year":"2022","journal-title":"IEEE\/ASME Trans. Mechatronics"},{"key":"10.1016\/j.knosys.2023.110984_b18","doi-asserted-by":"crossref","DOI":"10.1088\/1361-6501\/ac656a","article-title":"An ameliorated african vulture optimization algorithm to diagnose the rolling bearing defects","volume":"33","author":"Vashishtha","year":"2022","journal-title":"Meas. Sci. Technol."},{"key":"10.1016\/j.knosys.2023.110984_b19","doi-asserted-by":"crossref","first-page":"4961","DOI":"10.1109\/TII.2020.2968370","article-title":"FEM simulation-based generative adversarial networks to detect bearing faults","volume":"16","author":"Gao","year":"2020","journal-title":"IEEE Trans. Ind. Inform."},{"key":"10.1016\/j.knosys.2023.110984_b20","doi-asserted-by":"crossref","DOI":"10.1016\/j.isatra.2022.01.013","article-title":"Intelligent fault diagnosis of hydraulic piston pump based on deep learning and Bayesian optimization","author":"Tang","year":"2022","journal-title":"ISA Trans."},{"key":"10.1016\/j.knosys.2023.110984_b21","doi-asserted-by":"crossref","DOI":"10.1109\/TIM.2021.3055802","article-title":"Novel convolutional neural network ( NCNN ) for the diagnosis of bearing defects in rotary machinery","volume":"70","author":"Kumar","year":"2021","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"10.1016\/j.knosys.2023.110984_b22","article-title":"Unsupervised learning model of sparse filtering enhanced using wasserstein distance for intelligent fault diagnosis","author":"Vashishtha","year":"2022","journal-title":"J. Vib. Eng. Technol."},{"key":"10.1016\/j.knosys.2023.110984_b23","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2020.113710","article-title":"A study on adaptation lightweight architecture based deep learning models for bearing fault diagnosis under varying working conditions","volume":"160","author":"Wu","year":"2020","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.knosys.2023.110984_b24","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2020.105971","article-title":"Intelligent fault diagnosis of rolling bearings based on normalized CNN considering data imbalance and variable working conditions","volume":"199","author":"Zhao","year":"2020","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.knosys.2023.110984_b25","doi-asserted-by":"crossref","first-page":"62","DOI":"10.1016\/j.neucom.2018.09.050","article-title":"A convolutional neural network based on a capsule network with strong generalization for bearing fault diagnosis","volume":"323","author":"Zhu","year":"2019","journal-title":"Neurocomputing"},{"key":"10.1016\/j.knosys.2023.110984_b26","doi-asserted-by":"crossref","DOI":"10.1016\/j.measurement.2020.107901","article-title":"An integrated method based on hybrid grey wolf optimizer improved variational mode decomposition and deep neural network for fault diagnosis of rolling bearing","volume":"162","author":"Gai","year":"2020","journal-title":"Measurement"},{"key":"10.1016\/j.knosys.2023.110984_b27","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2023.119738","article-title":"Condition monitoring using machine learning: A review of theory, applications, and recent advances","volume":"221","author":"Surucu","year":"2023","journal-title":"Expert Syst. Appl"},{"key":"10.1016\/j.knosys.2023.110984_b28","article-title":"Optimal parameters extracting of fuel cell based on gorilla troops optimizer","volume":"332","author":"Abd\u00a0Elaziz","year":"2023","journal-title":"Fuel"},{"key":"10.1016\/j.knosys.2023.110984_b29","doi-asserted-by":"crossref","DOI":"10.1016\/j.enconman.2021.115134","article-title":"Parameter extraction of photovoltaic models using a memory-based improved gorilla troops optimizer","volume":"252","author":"Abdel-Basset","year":"2022","journal-title":"Energy Convers. Manag."},{"key":"10.1016\/j.knosys.2023.110984_b30","doi-asserted-by":"crossref","first-page":"1","DOI":"10.3390\/math10152742","article-title":"Feature selection using artificial gorilla troop optimization for biomedical data: A case analysis with COVID-19 data","volume":"10","author":"Piri","year":"2022","journal-title":"Mathematics"},{"key":"10.1016\/j.knosys.2023.110984_b31","doi-asserted-by":"crossref","DOI":"10.3390\/su13169459","article-title":"Gorilla troops optimizer for electrically based single and double-diode models of solar photovoltaic systems","volume":"13","author":"Ginidi","year":"2021","journal-title":"Sustainability"},{"key":"10.1016\/j.knosys.2023.110984_b32","doi-asserted-by":"crossref","DOI":"10.1016\/j.measurement.2021.110272","article-title":"An amended grey wolf optimization with mutation strategy to diagnose bucket defects in pelton wheel","volume":"187","author":"Vashishtha","year":"2022","journal-title":"Measurement"},{"key":"10.1016\/j.knosys.2023.110984_b33","doi-asserted-by":"crossref","DOI":"10.1016\/j.engappai.2022.105794","article-title":"GTFE-Net: A gramian time frequency enhancement CNN for bearing fault diagnosis","volume":"119","author":"Jia","year":"2023","journal-title":"Eng. Appl. Artif. Intell."},{"key":"10.1016\/j.knosys.2023.110984_b34","doi-asserted-by":"crossref","first-page":"5887","DOI":"10.1002\/int.22535","article-title":"Artificial gorilla troops optimizer: A new nature-inspired metaheuristic algorithm for global optimization problems","volume":"36","author":"Abdollahzadeh","year":"2021","journal-title":"Int. J. Intell. Syst."},{"key":"10.1016\/j.knosys.2023.110984_b35","article-title":"A symbiosis of arithmetic optimizer with slime mould algorithm for improving global optimization and conventional design problem","author":"Chauhan","year":"2021","journal-title":"J. Supercomput."},{"key":"10.1016\/j.knosys.2023.110984_b36","doi-asserted-by":"crossref","DOI":"10.3390\/a15090317","article-title":"Improved slime mold algorithm with dynamic quantum rotation gate and opposition-based learning for global optimization and engineering design problems","volume":"15","author":"Zhang","year":"2022","journal-title":"Algorithms"},{"key":"10.1016\/j.knosys.2023.110984_b37","doi-asserted-by":"crossref","DOI":"10.1016\/j.apacoust.2021.108336","article-title":"Intelligent fault diagnosis of hydraulic piston pump combining improved lenet-5 and PSO hyperparameter optimization","volume":"183","author":"Zhu","year":"2021","journal-title":"Appl. Acoust."},{"key":"10.1016\/j.knosys.2023.110984_b38","doi-asserted-by":"crossref","DOI":"10.1016\/j.apacoust.2022.108718","article-title":"Acoustic signal-based fault detection of hydraulic piston pump using a particle swarm optimization enhancement CNN","volume":"192","author":"Zhu","year":"2022","journal-title":"Appl. Acoust."},{"key":"10.1016\/j.knosys.2023.110984_b39","doi-asserted-by":"crossref","first-page":"555","DOI":"10.1016\/j.isatra.2022.01.013","article-title":"Intelligent fault diagnosis of hydraulic piston pump based on deep learning and Bayesian optimization","volume":"129","author":"Tang","year":"2022","journal-title":"ISA Trans."}],"container-title":["Knowledge-Based Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0950705123007347?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0950705123007347?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,4,27]],"date-time":"2024-04-27T18:10:24Z","timestamp":1714241424000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0950705123007347"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,11]]},"references-count":39,"alternative-id":["S0950705123007347"],"URL":"https:\/\/doi.org\/10.1016\/j.knosys.2023.110984","relation":{},"ISSN":["0950-7051"],"issn-type":[{"value":"0950-7051","type":"print"}],"subject":[],"published":{"date-parts":[[2023,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Intelligent fault diagnosis of worm gearbox based on adaptive CNN using amended gorilla troop optimization with quantum gate mutation strategy","name":"articletitle","label":"Article Title"},{"value":"Knowledge-Based Systems","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.knosys.2023.110984","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"110984"}}