{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T19:03:23Z","timestamp":1732043003510},"reference-count":45,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Knowledge-Based Systems"],"published-print":{"date-parts":[[2023,11]]},"DOI":"10.1016\/j.knosys.2023.110958","type":"journal-article","created":{"date-parts":[[2023,9,9]],"date-time":"2023-09-09T05:22:55Z","timestamp":1694236975000},"page":"110958","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":13,"special_numbering":"C","title":["Novel joint transfer fine-grained metric network for cross-domain few-shot fault diagnosis"],"prefix":"10.1016","volume":"279","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-7644-7891","authenticated-orcid":false,"given":"Junwei","family":"Hu","sequence":"first","affiliation":[]},{"given":"Weigang","family":"Li","sequence":"additional","affiliation":[]},{"given":"Ailong","family":"Wu","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0009-0003-4181-1539","authenticated-orcid":false,"given":"Zhiqiang","family":"Tian","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.knosys.2023.110958_b1","doi-asserted-by":"crossref","DOI":"10.1016\/j.ymssp.2019.106587","article-title":"Applications of machine learning to machine fault diagnosis: A review and roadmap","volume":"138","author":"Lei","year":"2020","journal-title":"Mech. Syst. Signal Process."},{"key":"10.1016\/j.knosys.2023.110958_b2","doi-asserted-by":"crossref","DOI":"10.1016\/j.aei.2022.101609","article-title":"Vibration signal-based early fault prognosis: Status quo and applications","volume":"52","author":"Lv","year":"2022","journal-title":"Adv. Eng. Inform."},{"key":"10.1016\/j.knosys.2023.110958_b3","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2023.110345","article-title":"Attention-based deep meta-transfer learning for few-shot fine-grained fault diagnosis","volume":"264","author":"Li","year":"2023","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.knosys.2023.110958_b4","doi-asserted-by":"crossref","DOI":"10.1016\/j.aei.2023.101900","article-title":"Reinforcement learning-based distant supervision relation extraction for fault diagnosis knowledge graph construction under industry 4.0","volume":"55","author":"Chen","year":"2023","journal-title":"Adv. Eng. Inform."},{"key":"10.1016\/j.knosys.2023.110958_b5","doi-asserted-by":"crossref","DOI":"10.1016\/j.measurement.2021.110360","article-title":"A recursive sparse representation strategy for bearing fault diagnosis","volume":"187","author":"Han","year":"2022","journal-title":"Measurement"},{"issue":"4","key":"10.1016\/j.knosys.2023.110958_b6","doi-asserted-by":"crossref","first-page":"1505","DOI":"10.1109\/TIM.2019.2913058","article-title":"A combined polynomial chirplet transform and synchroextracting technique for analyzing nonstationary signals of rotating machinery","volume":"69","author":"Yu","year":"2020","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"10.1016\/j.knosys.2023.110958_b7","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2021.107638","article-title":"Degradation modeling and remaining useful life prediction for dependent competing failure processes","volume":"212","author":"Yan","year":"2021","journal-title":"Reliab. Eng. Syst. Saf."},{"issue":"2","key":"10.1016\/j.knosys.2023.110958_b8","doi-asserted-by":"crossref","first-page":"1968","DOI":"10.1109\/TIE.2021.3063975","article-title":"Adaptive knowledge transfer by continual weighted updating of filter kernels for few-shot fault diagnosis of machines","volume":"69","author":"Xing","year":"2022","journal-title":"IEEE Trans. Ind. Electron."},{"issue":"3","key":"10.1016\/j.knosys.2023.110958_b9","doi-asserted-by":"crossref","first-page":"2727","DOI":"10.1109\/TIE.2017.2745473","article-title":"Electric locomotive bearing fault diagnosis using a novel convolutional deep belief network","volume":"65","author":"Shao","year":"2018","journal-title":"IEEE Trans. Ind. Electron."},{"key":"10.1016\/j.knosys.2023.110958_b10","doi-asserted-by":"crossref","DOI":"10.1016\/j.aei.2023.101877","article-title":"CNN parameter design based on fault signal analysis and its application in bearing fault diagnosis","volume":"55","author":"Ruan","year":"2023","journal-title":"Adv. Eng. Inform."},{"key":"10.1016\/j.knosys.2023.110958_b11","doi-asserted-by":"crossref","first-page":"6647","DOI":"10.1007\/s10489-021-02229-1","article-title":"Bearing fault diagnosis based on combined multi-scale weighted entropy morphological filtering and bi-LSTM","volume":"51","author":"Zou","year":"2021","journal-title":"Appl. Intell."},{"key":"10.1016\/j.knosys.2023.110958_b12","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2019.105313","article-title":"Deep transfer multi-wavelet auto-encoder for intelligent fault diagnosis of gearbox with few target training samples","volume":"191","author":"He","year":"2020","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.knosys.2023.110958_b13","doi-asserted-by":"crossref","first-page":"180","DOI":"10.1016\/j.sigpro.2018.12.005","article-title":"Multi-layer domain adaptation method for rolling bearing fault diagnosis","volume":"157","author":"Li","year":"2019","journal-title":"Signal Process."},{"key":"10.1016\/j.knosys.2023.110958_b14","doi-asserted-by":"crossref","first-page":"383","DOI":"10.1016\/j.isatra.2021.03.013","article-title":"Semi-supervised meta-learning networks with squeeze-and-excitation attention for few-shot fault diagnosis","volume":"120","author":"Feng","year":"2022","journal-title":"ISA Trans."},{"key":"10.1016\/j.knosys.2023.110958_b15","series-title":"Self supervised learning for few shot hyperspectral image classification","author":"Braham","year":"2022"},{"key":"10.1016\/j.knosys.2023.110958_b16","doi-asserted-by":"crossref","DOI":"10.1016\/j.aei.2023.101883","article-title":"Deep continual transfer learning with dynamic weight aggregation for fault diagnosis of industrial streaming data under varying working conditions","volume":"55","author":"Li","year":"2023","journal-title":"Adv. Eng. Inform."},{"issue":"3","key":"10.1016\/j.knosys.2023.110958_b17","doi-asserted-by":"crossref","first-page":"1753","DOI":"10.1109\/TII.2020.2994621","article-title":"A novel weighted adversarial transfer network for partial domain fault diagnosis of machinery","volume":"17","author":"Li","year":"2021","journal-title":"IEEE Trans. Ind. Inform."},{"issue":"10","key":"10.1016\/j.knosys.2023.110958_b18","doi-asserted-by":"crossref","DOI":"10.1088\/1361-6501\/ace46c","article-title":"Prior knowledge-based residuals shrinkage prototype networks for cross-domain fault diagnosis","volume":"34","author":"Hu","year":"2023","journal-title":"Meas. Sci. Technol."},{"key":"10.1016\/j.knosys.2023.110958_b19","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2021.107646","article-title":"Meta-learning as a promising approach for few-shot cross-domain fault diagnosis: Algorithms, applications, and prospects","volume":"235","author":"Feng","year":"2022","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.knosys.2023.110958_b20","series-title":"Model-agnostic meta-learning for fast adaptation of deep networks","author":"Finn","year":"2017"},{"key":"10.1016\/j.knosys.2023.110958_b21","series-title":"On first-order meta-learning algorithms","author":"Nichol","year":"2018"},{"key":"10.1016\/j.knosys.2023.110958_b22","series-title":"2018 IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"1199","article-title":"Learning to compare: Relation network for few-shot learning","author":"Sung","year":"2018"},{"key":"10.1016\/j.knosys.2023.110958_b23","series-title":"Matching networks for one shot learning","author":"Vinyals","year":"2017"},{"key":"10.1016\/j.knosys.2023.110958_b24","series-title":"Prototypical networks for few-shot learning","author":"Snell","year":"2017"},{"key":"10.1016\/j.knosys.2023.110958_b25","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2022.110175","article-title":"Cross-domain meta learning fault diagnosis based on multi-scale dilated convolution and adaptive relation module","volume":"261","author":"Ma","year":"2023","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.knosys.2023.110958_b26","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2021.106829","article-title":"Similarity-based meta-learning network with adversarial domain adaptation for cross-domain fault identification","volume":"217","author":"Feng","year":"2021","journal-title":"Knowl.-Based Syst."},{"issue":"2","key":"10.1016\/j.knosys.2023.110958_b27","doi-asserted-by":"crossref","first-page":"199","DOI":"10.1109\/TNN.2010.2091281","article-title":"Domain adaptation via transfer component analysis","volume":"22","author":"Pan","year":"2011","journal-title":"IEEE Trans. Neural Netw."},{"key":"10.1016\/j.knosys.2023.110958_b28","doi-asserted-by":"crossref","first-page":"186","DOI":"10.1016\/j.jmsy.2021.11.016","article-title":"Unsupervised domain-share CNN for machine fault transfer diagnosis from steady speeds to time-varying speeds","volume":"62","author":"Cao","year":"2022","journal-title":"J. Manuf. Syst."},{"key":"10.1016\/j.knosys.2023.110958_b29","series-title":"2017 IEEE Conference on Computer Vision and Pattern Recognition","first-page":"2962","article-title":"Adversarial discriminative domain adaptation","author":"Tzeng","year":"2017"},{"issue":"6","key":"10.1016\/j.knosys.2023.110958_b30","doi-asserted-by":"crossref","first-page":"5254","DOI":"10.1109\/TMECH.2022.3177174","article-title":"Novel joint transfer network for unsupervised bearing fault diagnosis from simulation domain to experimental domain","volume":"27","author":"Xiao","year":"2022","journal-title":"IEEE\/ASME Trans. Mechatronics"},{"issue":"9","key":"10.1016\/j.knosys.2023.110958_b31","doi-asserted-by":"crossref","first-page":"6038","DOI":"10.1109\/TII.2022.3141783","article-title":"Deep adversarial subdomain adaptation network for intelligent fault diagnosis","volume":"18","author":"Liu","year":"2022","journal-title":"IEEE Trans. Ind. Inform."},{"key":"10.1016\/j.knosys.2023.110958_b32","doi-asserted-by":"crossref","first-page":"331","DOI":"10.1007\/s41095-022-0271-y","article-title":"Attention mechanisms in computer vision: A survey","volume":"8","author":"Guo","year":"2022","journal-title":"Comput. Vis. Media"},{"key":"10.1016\/j.knosys.2023.110958_b33","series-title":"CBAM: Convolutional block attention module","author":"Woo","year":"2018"},{"key":"10.1016\/j.knosys.2023.110958_b34","series-title":"Squeeze-and-excitation networks","author":"Hu","year":"2019"},{"key":"10.1016\/j.knosys.2023.110958_b35","doi-asserted-by":"crossref","unstructured":"T. Gao, X. Han, Z. Liu, M. Sun, Hybrid Attention-Based Prototypical Networks for Noisy Few-Shot Relation Classification, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, 2019, pp. 6407\u20136414.","DOI":"10.1609\/aaai.v33i01.33016407"},{"issue":"12","key":"10.1016\/j.knosys.2023.110958_b36","doi-asserted-by":"crossref","first-page":"7957","DOI":"10.1109\/TII.2021.3064377","article-title":"Universal domain adaptation in fault diagnostics with hybrid weighted deep adversarial learning","volume":"17","author":"Zhang","year":"2021","journal-title":"IEEE Trans. Ind. Inform."},{"key":"10.1016\/j.knosys.2023.110958_b37","doi-asserted-by":"crossref","DOI":"10.1016\/j.measurement.2022.112146","article-title":"Multiscale dilated convolutional subdomain adaptation network with attention for unsupervised fault diagnosis of rotating machinery cross operating conditions","volume":"204","author":"Xiao","year":"2022","journal-title":"Measurement"},{"issue":"1","key":"10.1016\/j.knosys.2023.110958_b38","first-page":"2030","article-title":"Domain-adversarial training of neural networks","volume":"17","author":"Ganin","year":"2016","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.knosys.2023.110958_b39","series-title":"Deep transfer learning with joint adaptation networks","author":"Long","year":"2017"},{"issue":"4","key":"10.1016\/j.knosys.2023.110958_b40","doi-asserted-by":"crossref","first-page":"2446","DOI":"10.1109\/TII.2018.2864759","article-title":"Highly accurate machine fault diagnosis using deep transfer learning","volume":"15","author":"Shao","year":"2019","journal-title":"IEEE Trans. Ind. Inform."},{"issue":"8","key":"10.1016\/j.knosys.2023.110958_b41","doi-asserted-by":"crossref","DOI":"10.1088\/1361-6501\/ab6ade","article-title":"Cross-domain learning in rotating machinery fault diagnosis under various operating conditions based on parameter transfer","volume":"31","author":"Li","year":"2020","journal-title":"Meas. Sci. Technol."},{"key":"10.1016\/j.knosys.2023.110958_b42","first-page":"1","article-title":"Domain adversarial graph convolutional network for fault diagnosis under variable working conditions","volume":"70","author":"Li","year":"2021","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"10.1016\/j.knosys.2023.110958_b43","doi-asserted-by":"crossref","first-page":"80937","DOI":"10.1109\/ACCESS.2019.2921480","article-title":"Domain adaptive motor fault diagnosis using deep transfer learning","volume":"7","author":"Xiao","year":"2019","journal-title":"IEEE Access"},{"issue":"4","key":"10.1016\/j.knosys.2023.110958_b44","doi-asserted-by":"crossref","first-page":"973","DOI":"10.1007\/s10845-020-01709-4","article-title":"Deep prototypical networks based domain adaptation for fault diagnosis","volume":"33","author":"Wang","year":"2022","journal-title":"J. Intell. Manuf."},{"key":"10.1016\/j.knosys.2023.110958_b45","doi-asserted-by":"crossref","DOI":"10.1016\/j.ymssp.2021.108653","article-title":"The emerging graph neural networks for intelligent fault diagnostics and prognostics: A guideline and a benchmark study","volume":"168","author":"Li","year":"2022","journal-title":"Mech. Syst. Signal Process."}],"container-title":["Knowledge-Based Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0950705123007086?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0950705123007086?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,4,27]],"date-time":"2024-04-27T18:09:14Z","timestamp":1714241354000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0950705123007086"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,11]]},"references-count":45,"alternative-id":["S0950705123007086"],"URL":"https:\/\/doi.org\/10.1016\/j.knosys.2023.110958","relation":{},"ISSN":["0950-7051"],"issn-type":[{"value":"0950-7051","type":"print"}],"subject":[],"published":{"date-parts":[[2023,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Novel joint transfer fine-grained metric network for cross-domain few-shot fault diagnosis","name":"articletitle","label":"Article Title"},{"value":"Knowledge-Based Systems","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.knosys.2023.110958","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"110958"}}