{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,29]],"date-time":"2024-07-29T15:55:18Z","timestamp":1722268518201},"reference-count":45,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Knowledge-Based Systems"],"published-print":{"date-parts":[[2023,9]]},"DOI":"10.1016\/j.knosys.2023.110721","type":"journal-article","created":{"date-parts":[[2023,6,15]],"date-time":"2023-06-15T20:13:39Z","timestamp":1686860019000},"page":"110721","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":3,"special_numbering":"C","title":["Pyramid multi-loss vision transformer for thyroid cancer classification using cytological smear"],"prefix":"10.1016","volume":"275","author":[{"given":"Bo","family":"Yu","sequence":"first","affiliation":[]},{"given":"Peng","family":"Yin","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7835-9556","authenticated-orcid":false,"given":"Hechang","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Yifei","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Yu","family":"Zhao","sequence":"additional","affiliation":[]},{"given":"Xianling","family":"Cong","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8666-3731","authenticated-orcid":false,"given":"Jouke","family":"Dijkstra","sequence":"additional","affiliation":[]},{"given":"Lele","family":"Cong","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.knosys.2023.110721_b1","series-title":"Thyroid disease","author":"Clinic","year":"2022"},{"key":"10.1016\/j.knosys.2023.110721_b2","series-title":"Thyroid disease: symptoms and treatment","author":"Clinic","year":"2019"},{"issue":"6","key":"10.1016\/j.knosys.2023.110721_b3","doi-asserted-by":"crossref","DOI":"10.1001\/jamanetworkopen.2020.8759","article-title":"Global burden of thyroid cancer from 1990 to 2017","volume":"3","author":"Deng","year":"2020","journal-title":"JAMA Netw. Open"},{"key":"10.1016\/j.knosys.2023.110721_b4","doi-asserted-by":"crossref","DOI":"10.1001\/jamasurg.2022.4989","article-title":"Diagnostic accuracy of fine-needle biopsy in the detection of thyroid malignancy: A systematic review and meta-analysis","author":"Hsiao","year":"2022","journal-title":"JAMA Surg."},{"key":"10.1016\/j.knosys.2023.110721_b5","article-title":"A survey of convolutional neural networks: analysis, applications, and prospects","author":"Li","year":"2021","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"4","key":"10.1016\/j.knosys.2023.110721_b6","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3448974","article-title":"Recurrent neural networks for edge intelligence: A survey","volume":"54","author":"Lalapura","year":"2021","journal-title":"ACM Comput. Surv."},{"key":"10.1016\/j.knosys.2023.110721_b7","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2022.110168","article-title":"Data and knowledge co-driving for cancer subtype classification on multi-scale histopathological slides","volume":"260","author":"Yu","year":"2023","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.knosys.2023.110721_b8","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2022.105209","article-title":"AI-based carcinoma detection and classification using histopathological images: A systematic review","author":"Prabhu","year":"2022","journal-title":"Comput. Biol. Med."},{"issue":"2","key":"10.1016\/j.knosys.2023.110721_b9","doi-asserted-by":"crossref","first-page":"e71","DOI":"10.1016\/S2589-7500(22)00210-2","article-title":"Interpretable deep learning model to predict the molecular classification of endometrial cancer from haematoxylin and eosin-stained whole-slide images: a combined analysis of the PORTEC randomised trials and clinical cohorts","volume":"5","author":"Fremond","year":"2023","journal-title":"Lancet Digit. Health"},{"key":"10.1016\/j.knosys.2023.110721_b10","article-title":"Self supervised contrastive learning for digital histopathology","volume":"7","author":"Ciga","year":"2022","journal-title":"Mach. Learn. Appl."},{"key":"10.1016\/j.knosys.2023.110721_b11","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2021.102256","article-title":"Self-supervised driven consistency training for annotation efficient histopathology image analysis","volume":"75","author":"Srinidhi","year":"2022","journal-title":"Med. Image Anal."},{"issue":"3","key":"10.1016\/j.knosys.2023.110721_b12","doi-asserted-by":"crossref","first-page":"101","DOI":"10.31083\/j.fbl2703101","article-title":"Machine learning on thyroid disease: a review","volume":"27","author":"Lee","year":"2022","journal-title":"Front. Biosci.-Landmark"},{"key":"10.1016\/j.knosys.2023.110721_b13","article-title":"Deep learning for computational cytology: A survey","author":"Jiang","year":"2022","journal-title":"Med. Image Anal."},{"issue":"4","key":"10.1016\/j.knosys.2023.110721_b14","first-page":"727","article-title":"Breast cancer pathological image classification based on deep learning","volume":"28","author":"Hou","year":"2020","journal-title":"J. X-Ray Sci. Technol."},{"key":"10.1016\/j.knosys.2023.110721_b15","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2021.101955","article-title":"Dual-path network with synergistic grouping loss and evidence driven risk stratification for whole slide cervical image analysis","volume":"69","author":"Lin","year":"2021","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.knosys.2023.110721_b16","doi-asserted-by":"crossref","unstructured":"S. Takahama, Y. Kurose, Y. Mukuta, H. Abe, M. Fukayama, A. Yoshizawa, M. Kitagawa, T. Harada, Multi-stage pathological image classification using semantic segmentation, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, 2019, pp. 10702\u201310711.","DOI":"10.1109\/ICCV.2019.01080"},{"key":"10.1016\/j.knosys.2023.110721_b17","doi-asserted-by":"crossref","unstructured":"K. Das, S. Conjeti, A.G. Roy, J. Chatterjee, D. Sheet, Multiple instance learning of deep convolutional neural networks for breast histopathology whole slide classification, in: 2018 IEEE 15th International Symposium on Biomedical Imaging, 2018, pp. 578\u2013581.","DOI":"10.1109\/ISBI.2018.8363642"},{"key":"10.1016\/j.knosys.2023.110721_b18","doi-asserted-by":"crossref","first-page":"103","DOI":"10.1016\/j.eswa.2018.09.049","article-title":"Multiple instance learning for histopathological breast cancer image classification","volume":"117","author":"Sudharshan","year":"2019","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.knosys.2023.110721_b19","series-title":"International Conference on Machine Learning","first-page":"2127","article-title":"Attention-based deep multiple instance learning","author":"Ilse","year":"2018"},{"key":"10.1016\/j.knosys.2023.110721_b20","unstructured":"A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, N. Houlsby, An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, in: International Conference on Learning Representations, 2021, URL:."},{"key":"10.1016\/j.knosys.2023.110721_b21","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2021.105026","article-title":"Is the aspect ratio of cells important in deep learning? A robust comparison of deep learning methods for multi-scale cytopathology cell image classification: From convolutional neural networks to visual transformers","volume":"141","author":"Liu","year":"2022","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.knosys.2023.110721_b22","series-title":"Medical Image Computing and Computer Assisted Intervention\u2013MICCAI 2022: 25th International Conference, Singapore, September 18\u201322, 2022, Proceedings, Part II","first-page":"160","article-title":"Transformer based multiple instance learning for weakly supervised histopathology image segmentation","author":"Qian","year":"2022"},{"key":"10.1016\/j.knosys.2023.110721_b23","series-title":"2022 IEEE International Conference on Bioinformatics and Biomedicine","first-page":"1804","article-title":"Attention multiple instance learning with transformer aggregation for breast cancer whole slide image classification","author":"Zhang","year":"2022"},{"key":"10.1016\/j.knosys.2023.110721_b24","doi-asserted-by":"crossref","DOI":"10.3389\/fcomp.2021.684521","article-title":"Multi_Scale_Tools: a python library to exploit multi-scale whole slide images","volume":"3","author":"Marini","year":"2021","journal-title":"Front. Comput. Sci."},{"key":"10.1016\/j.knosys.2023.110721_b25","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2022.108827","article-title":"GasHis-transformer: A multi-scale visual transformer approach for gastric histopathological image detection","volume":"130","author":"Chen","year":"2022","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.knosys.2023.110721_b26","doi-asserted-by":"crossref","DOI":"10.1016\/j.cmpb.2022.106924","article-title":"StoHisNet: A hybrid multi-classification model with CNN and transformer for gastric pathology images","volume":"221","author":"Fu","year":"2022","journal-title":"Comput. Methods Programs Biomed."},{"key":"10.1016\/j.knosys.2023.110721_b27","doi-asserted-by":"crossref","unstructured":"H. Zhang, Y. Meng, Y. Zhao, Y. Qiao, X. Yang, S.E. Coupland, Y. Zheng, Dtfd-mil: Double-tier feature distillation multiple instance learning for histopathology whole slide image classification, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 18802\u201318812.","DOI":"10.1109\/CVPR52688.2022.01824"},{"issue":"1","key":"10.1016\/j.knosys.2023.110721_b28","doi-asserted-by":"crossref","first-page":"14527","DOI":"10.1038\/s41598-022-18647-1","article-title":"Survival prediction in triple negative breast cancer using multiple instance learning of histopathological images","volume":"12","author":"Sandarenu","year":"2022","journal-title":"Sci. Rep."},{"key":"10.1016\/j.knosys.2023.110721_b29","article-title":"Attention is all you need","volume":"30","author":"Vaswani","year":"2017","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.knosys.2023.110721_b30","doi-asserted-by":"crossref","unstructured":"T. Stegm\u00fcller, B. Bozorgtabar, A. Spahr, J.-P. Thiran, Scorenet: Learning non-uniform attention and augmentation for transformer-based histopathological image classification, in: Proceedings of the IEEE\/CVF Winter Conference on Applications of Computer Vision, 2023, pp. 6170\u20136179.","DOI":"10.1109\/WACV56688.2023.00611"},{"key":"10.1016\/j.knosys.2023.110721_b31","first-page":"1","article-title":"CWC-transformer: a visual transformer approach for compressed whole slide image classification","author":"Wang","year":"2023","journal-title":"Neural Comput. Appl."},{"issue":"1","key":"10.1016\/j.knosys.2023.110721_b32","doi-asserted-by":"crossref","DOI":"10.1016\/j.isci.2022.105872","article-title":"Vision transformer-based weakly supervised histopathological image analysis of primary brain tumors","volume":"26","author":"Li","year":"2023","journal-title":"IScience"},{"key":"10.1016\/j.knosys.2023.110721_b33","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2022.119452","article-title":"SwinCup: Cascaded swin transformer for histopathological structures segmentation in colorectal cancer","volume":"216","author":"Zidan","year":"2023","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.knosys.2023.110721_b34","doi-asserted-by":"crossref","unstructured":"L. Yuan, Y. Chen, T. Wang, W. Yu, Y. Shi, Z.-H. Jiang, F.E. Tay, J. Feng, S. Yan, Tokens-to-token vit: Training vision transformers from scratch on imagenet, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, 2021, pp. 558\u2013567.","DOI":"10.1109\/ICCV48922.2021.00060"},{"key":"10.1016\/j.knosys.2023.110721_b35","first-page":"1","article-title":"Improving cervical cancer classification with imbalanced datasets combining taming transformers with T2T-ViT","author":"Zhao","year":"2022","journal-title":"Multimedia Tools Appl."},{"key":"10.1016\/j.knosys.2023.110721_b36","article-title":"A framework for multiple-instance learning","volume":"10","author":"Maron","year":"1997","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.knosys.2023.110721_b37","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2023.102748","article-title":"Prototypical multiple instance learning for predicting lymph node metastasis of breast cancer from whole-slide pathological images","author":"Yu","year":"2023","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.knosys.2023.110721_b38","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2022.109245","article-title":"HAMIL: Hierarchical aggregation-based multi-instance learning for microscopy image classification","volume":"136","author":"Yang","year":"2023","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.knosys.2023.110721_b39","doi-asserted-by":"crossref","unstructured":"N. Hashimoto, D. Fukushima, R. Koga, Y. Takagi, K. Ko, K. Kohno, M. Nakaguro, S. Nakamura, H. Hontani, I. Takeuchi, Multi-scale domain-adversarial multiple-instance CNN for cancer subtype classification with unannotated histopathological images, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 3852\u20133861.","DOI":"10.1109\/CVPR42600.2020.00391"},{"key":"10.1016\/j.knosys.2023.110721_b40","series-title":"Medical Image Computing and Computer Assisted Intervention\u2013MICCAI 2022: 25th International Conference, Singapore, September 18\u201322, 2022, Proceedings, Part II","first-page":"66","article-title":"SETMIL: spatial encoding transformer-based multiple instance learning for pathological image analysis","author":"Zhao","year":"2022"},{"key":"10.1016\/j.knosys.2023.110721_b41","doi-asserted-by":"crossref","DOI":"10.1109\/JBHI.2023.3262454","article-title":"Single-cell heterogeneity-aware transformer-guided multiple instance learning for cancer aneuploidy prediction from whole slide histopathology images","author":"Yu","year":"2023","journal-title":"IEEE J. Biomed. Health Inf."},{"key":"10.1016\/j.knosys.2023.110721_b42","first-page":"2136","article-title":"Transmil: Transformer based correlated multiple instance learning for whole slide image classification","volume":"34","author":"Shao","year":"2021","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.knosys.2023.110721_b43","series-title":"Medical Image Computing and Computer Assisted Intervention\u2013MICCAI 2021: 24th International Conference, Strasbourg, France, September 27\u2013October 1, 2021, Proceedings, Part VIII 24","first-page":"206","article-title":"DT-MIL: deformable transformer for multi-instance learning on histopathological image","author":"Li","year":"2021"},{"issue":"2","key":"10.1016\/j.knosys.2023.110721_b44","doi-asserted-by":"crossref","first-page":"125","DOI":"10.1002\/path.6027","article-title":"MIST: multiple instance learning network based on swin transformer for whole slide image classification of colorectal adenomas","volume":"259","author":"Cai","year":"2023","journal-title":"J. Pathol."},{"key":"10.1016\/j.knosys.2023.110721_b45","series-title":"Medical Imaging 2018: Digital Pathology, Vol. 10581","first-page":"327","article-title":"Classification of lung cancer histology images using patch-level summary statistics","author":"Graham","year":"2018"}],"container-title":["Knowledge-Based Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0950705123004719?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0950705123004719?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,10,13]],"date-time":"2023-10-13T05:59:48Z","timestamp":1697176788000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0950705123004719"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,9]]},"references-count":45,"alternative-id":["S0950705123004719"],"URL":"https:\/\/doi.org\/10.1016\/j.knosys.2023.110721","relation":{},"ISSN":["0950-7051"],"issn-type":[{"value":"0950-7051","type":"print"}],"subject":[],"published":{"date-parts":[[2023,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Pyramid multi-loss vision transformer for thyroid cancer classification using cytological smear","name":"articletitle","label":"Article Title"},{"value":"Knowledge-Based Systems","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.knosys.2023.110721","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"110721"}}