{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,14]],"date-time":"2024-09-14T22:41:59Z","timestamp":1726353719703},"reference-count":50,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["62106148"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100006469","name":"Fundo para o Desenvolvimento das Ci\u00eancias e da Tecnologia","doi-asserted-by":"publisher","award":["0019\/2019\/A1","0075\/2019\/A2"],"id":[{"id":"10.13039\/501100006469","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Knowledge-Based Systems"],"published-print":{"date-parts":[[2023,8]]},"DOI":"10.1016\/j.knosys.2023.110632","type":"journal-article","created":{"date-parts":[[2023,5,12]],"date-time":"2023-05-12T15:38:10Z","timestamp":1683905890000},"page":"110632","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":11,"special_numbering":"C","title":["Attribute reduction based on neighborhood constrained fuzzy rough sets"],"prefix":"10.1016","volume":"274","author":[{"given":"Meng","family":"Hu","sequence":"first","affiliation":[]},{"given":"Yanting","family":"Guo","sequence":"additional","affiliation":[]},{"given":"Degang","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Eric C.C.","family":"Tsang","sequence":"additional","affiliation":[]},{"given":"Qingshuo","family":"Zhang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.knosys.2023.110632_b1","doi-asserted-by":"crossref","first-page":"11381","DOI":"10.1007\/s00500-019-04602-2","article-title":"Data augmentation using MG-GAN for improved cancer classification on gene expression data","volume":"24","author":"Chaudhari","year":"2020","journal-title":"Soft Comput."},{"issue":"1","key":"10.1016\/j.knosys.2023.110632_b2","doi-asserted-by":"crossref","first-page":"211","DOI":"10.1016\/j.asoc.2012.07.029","article-title":"Attribute selection based on information gain ratio in fuzzy rough set theory with application to tumor classification","volume":"13","author":"Dai","year":"2013","journal-title":"Appl. Soft. Comput."},{"issue":"5","key":"10.1016\/j.knosys.2023.110632_b3","doi-asserted-by":"crossref","first-page":"341","DOI":"10.1007\/BF01001956","article-title":"Rough sets","volume":"11","author":"Pawlak","year":"1982","journal-title":"Int. J. Comput. Inform. Sci."},{"key":"10.1016\/j.knosys.2023.110632_b4","doi-asserted-by":"crossref","first-page":"301","DOI":"10.1016\/j.ins.2021.10.063","article-title":"Attribute reduction based on overlap degree and k-nearest-neighbor rough sets in decision information systems","volume":"584","author":"Hu","year":"2022","journal-title":"Inform. Sci."},{"key":"10.1016\/j.knosys.2023.110632_b5","doi-asserted-by":"crossref","first-page":"205","DOI":"10.1016\/j.knosys.2018.10.038","article-title":"Fuzzy rough set-based attribute reduction using distance measures","volume":"164","author":"Wang","year":"2019","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.knosys.2023.110632_b6","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2019.06.012","article-title":"Adaptive weighted generalized multi-granulation interval-valued decision-theoretic rough sets","volume":"187","author":"Guo","year":"2020","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.knosys.2023.110632_b7","doi-asserted-by":"crossref","first-page":"1049","DOI":"10.1007\/s13042-021-01434-1","article-title":"A novel approach to concept-cognitive learning in interval-valued formal contexts: A granular computing viewpoint","volume":"13","author":"Hu","year":"2022","journal-title":"Int. J. Mach. Learn. Cyber."},{"key":"10.1016\/j.knosys.2023.110632_b8","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2022.116946","article-title":"A novel multi-attribute decision-making method based on neighborhood approximations and its application","volume":"199","author":"Yu","year":"2022","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.knosys.2023.110632_b9","doi-asserted-by":"crossref","first-page":"129","DOI":"10.1016\/j.asoc.2016.04.003","article-title":"An incremental algorithm for attribute reduction with variable precision rough sets","volume":"45","author":"Chen","year":"2016","journal-title":"Appl. Soft. Comput."},{"key":"10.1016\/j.knosys.2023.110632_b10","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2019.105082","article-title":"Incremental updating approximations for double-quantitative decision-theoretic rough sets with the variation of objects","volume":"189","author":"Guo","year":"2020","journal-title":"Knowl.-Based Syst."},{"issue":"6","key":"10.1016\/j.knosys.2023.110632_b11","doi-asserted-by":"crossref","first-page":"1683","DOI":"10.1109\/TFUZZ.2021.3064686","article-title":"Incremental feature selection using a conditional entropy based on fuzzy dominance neighborhood rough sets","volume":"30","author":"Sang","year":"2022","journal-title":"IEEE Trans. Fuzzy Syst."},{"key":"10.1016\/j.knosys.2023.110632_b12","doi-asserted-by":"crossref","first-page":"191","DOI":"10.1080\/03081079008935107","article-title":"Rough fuzzy sets and fuzzy rough sets","volume":"17","author":"Dubois","year":"1990","journal-title":"Int. J. General Syst."},{"key":"10.1016\/j.knosys.2023.110632_b13","series-title":"Handbook of Applications and Advances of the Rough Set Theory","first-page":"203","article-title":"Putting rough sets and fuzzy sets together, intelligent decision support","author":"Dubois","year":"1992"},{"issue":"2","key":"10.1016\/j.knosys.2023.110632_b14","doi-asserted-by":"crossref","first-page":"153","DOI":"10.1002\/int.10014","article-title":"Rough approximation by dominance relations","volume":"17","author":"Greco","year":"2002","journal-title":"Int. J. Intell. Syst."},{"issue":"5","key":"10.1016\/j.knosys.2023.110632_b15","doi-asserted-by":"crossref","first-page":"1130","DOI":"10.1109\/TFUZZ.2006.889960","article-title":"Attributes reduction using fuzzy rough sets","volume":"16","author":"Tsang","year":"2008","journal-title":"IEEE Trans. Fuzzy Syst."},{"issue":"18","key":"10.1016\/j.knosys.2023.110632_b16","doi-asserted-by":"crossref","first-page":"3577","DOI":"10.1016\/j.ins.2008.05.024","article-title":"Neighborhood rough set based heterogeneous feature subset selection","volume":"178","author":"Hu","year":"2008","journal-title":"Inform. Sci."},{"key":"10.1016\/j.knosys.2023.110632_b17","doi-asserted-by":"crossref","first-page":"110","DOI":"10.1016\/j.ins.2021.04.016","article-title":"An improvement of rough sets\u2019 accuracy measure using containment neighborhoods with a medical application","volume":"569","author":"Al-shami","year":"2021","journal-title":"Inform. Sci."},{"issue":"4","key":"10.1016\/j.knosys.2023.110632_b18","doi-asserted-by":"crossref","first-page":"2200","DOI":"10.1109\/TCYB.2021.3112674","article-title":"Relative fuzzy rough approximations for feature selection and classification","volume":"53","author":"An","year":"2023","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.knosys.2023.110632_b19","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s13042-014-0232-6","article-title":"Feature and instance reduction for PNN classifiers based on fuzzy rough sets","volume":"7","author":"Tsang","year":"2016","journal-title":"Int. J. Mach. Learn. Cyber."},{"key":"10.1016\/j.knosys.2023.110632_b20","doi-asserted-by":"crossref","first-page":"286","DOI":"10.1016\/j.ins.2022.06.060","article-title":"Novel fuzzy \u03b2-covering rough set models and their applications","volume":"608","author":"Dai","year":"2022","journal-title":"Inform. Sci."},{"issue":"4","key":"10.1016\/j.knosys.2023.110632_b21","doi-asserted-by":"crossref","first-page":"2174","DOI":"10.1109\/TFUZZ.2017.2768044","article-title":"Maximal-discernibility-pair-based approach to attribute reduction in fuzzy rough sets","volume":"26","author":"Dai","year":"2018","journal-title":"IEEE Trans. Fuzzy Syst."},{"key":"10.1016\/j.knosys.2023.110632_b22","doi-asserted-by":"crossref","first-page":"87","DOI":"10.1016\/j.ins.2019.05.033","article-title":"Local logical disjunction double-quantitative rough sets","volume":"500","author":"Guo","year":"2019","journal-title":"Inform. Sci."},{"issue":"2","key":"10.1016\/j.knosys.2023.110632_b23","doi-asserted-by":"crossref","first-page":"385","DOI":"10.1109\/TFUZZ.2011.2173695","article-title":"A novel algorithm for finding reducts with fuzzy rough sets","volume":"20","author":"Chen","year":"2012","journal-title":"IEEE Trans. Fuzzy Syst."},{"key":"10.1016\/j.knosys.2023.110632_b24","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2021.106908","article-title":"A novel approach to attribute reduction based on weighted neighborhood rough sets","volume":"220","author":"Hu","year":"2021","journal-title":"Knowl.-Based Syst."},{"issue":"1","key":"10.1016\/j.knosys.2023.110632_b25","doi-asserted-by":"crossref","first-page":"39","DOI":"10.1016\/0022-0000(93)90048-2","article-title":"Variable precision rough set model","volume":"46","author":"Ziarko","year":"1993","journal-title":"J. Comput. System Sci."},{"issue":"3","key":"10.1016\/j.knosys.2023.110632_b26","doi-asserted-by":"crossref","first-page":"592","DOI":"10.1016\/S0377-2217(00)00280-0","article-title":"Reducts within the variable precision rough sets model: A further investigation","volume":"134","author":"Beynon","year":"2001","journal-title":"European J. Oper. Res."},{"key":"10.1016\/j.knosys.2023.110632_b27","series-title":"Transactions on Rough Sets I","first-page":"144","article-title":"Variable precision fuzzy rough sets","author":"Mieszkowicz-Rolka","year":"2004"},{"issue":"2","key":"10.1016\/j.knosys.2023.110632_b28","doi-asserted-by":"crossref","first-page":"451","DOI":"10.1109\/TFUZZ.2009.2013204","article-title":"The model of fuzzy variable precision rough sets","volume":"17","author":"Zhao","year":"2009","journal-title":"IEEE Trans. Fuzzy Syst."},{"issue":"22","key":"10.1016\/j.knosys.2023.110632_b29","doi-asserted-by":"crossref","first-page":"4384","DOI":"10.1016\/j.ins.2010.07.010","article-title":"Soft fuzzy rough sets for robust feature evaluation and selection","volume":"180","author":"Hu","year":"2010","journal-title":"Inform. Sci."},{"issue":"2\u20133","key":"10.1016\/j.knosys.2023.110632_b30","first-page":"189","article-title":"Soft minimum-enclosing-ball based robust fuzzy rough sets","volume":"115","author":"An","year":"2012","journal-title":"Fund. Inform."},{"issue":"4","key":"10.1016\/j.knosys.2023.110632_b31","doi-asserted-by":"crossref","first-page":"636","DOI":"10.1109\/TFUZZ.2011.2181180","article-title":"On robust fuzzy rough set models","volume":"20","author":"Hu","year":"2012","journal-title":"IEEE Trans. Fuzzy Syst."},{"key":"10.1016\/j.knosys.2023.110632_b32","doi-asserted-by":"crossref","first-page":"18","DOI":"10.1016\/j.ijar.2018.12.013","article-title":"Attribute reduction based on k-nearest neighborhood rough sets","volume":"106","author":"Wang","year":"2019","journal-title":"Internat. J. Approx. Reason."},{"issue":"15","key":"10.1016\/j.knosys.2023.110632_b33","doi-asserted-by":"crossref","first-page":"9915","DOI":"10.1007\/s00500-020-05410-9","article-title":"Text document classification using fuzzy rough set based on robust nearest neighbor (FRS-RNN)","volume":"25","author":"Behera","year":"2021","journal-title":"Soft Comput."},{"key":"10.1016\/j.knosys.2023.110632_b34","doi-asserted-by":"crossref","DOI":"10.1016\/j.asoc.2020.107064","article-title":"Probability granular distance-based fuzzy rough set model","volume":"102","author":"An","year":"2021","journal-title":"Appl. Soft. Comput."},{"key":"10.1016\/j.knosys.2023.110632_b35","doi-asserted-by":"crossref","DOI":"10.1016\/j.fss.2023.01.011","article-title":"Robust fuzzy rough approximations with kNN granules for semi-supervised feature selection","author":"An","year":"2023","journal-title":"Fuzzy Sets and Systems"},{"issue":"8","key":"10.1016\/j.knosys.2023.110632_b36","doi-asserted-by":"crossref","first-page":"2930","DOI":"10.1109\/TFUZZ.2021.3097811","article-title":"Feature selection with fuzzy-rough minimum classification error criterion","volume":"30","author":"Wang","year":"2022","journal-title":"IEEE Trans. Fuzzy Syst."},{"issue":"2","key":"10.1016\/j.knosys.2023.110632_b37","doi-asserted-by":"crossref","first-page":"866","DOI":"10.1016\/j.eswa.2006.10.043","article-title":"Neighborhood classifiers","volume":"34","author":"Hu","year":"2008","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.knosys.2023.110632_b38","doi-asserted-by":"crossref","DOI":"10.1016\/j.asoc.2020.106299","article-title":"Feature selection via normative fuzzy information weight with application into tumor classification","volume":"92","author":"Dai","year":"2020","journal-title":"Appl. Soft. Comput."},{"issue":"1\u20134","key":"10.1016\/j.knosys.2023.110632_b39","doi-asserted-by":"crossref","first-page":"63","DOI":"10.1007\/s13042-010-0008-6","article-title":"An efficient gene selection technique for cancer recognition based on neighborhood mutual information","volume":"1","author":"Hu","year":"2010","journal-title":"Int. J. Mach. Learn. Cyber."},{"key":"10.1016\/j.knosys.2023.110632_b40","doi-asserted-by":"crossref","first-page":"299","DOI":"10.1016\/j.neucom.2020.10.035","article-title":"Design and analysis of a noise-suppression zeroing neural network approach for robust synchronization of chaotic systems","volume":"426","author":"Dai","year":"2021","journal-title":"Neurocomputing"},{"issue":"6","key":"10.1016\/j.knosys.2023.110632_b41","doi-asserted-by":"crossref","first-page":"5559","DOI":"10.1109\/TCYB.2020.3040803","article-title":"Fast and robust attribute reduction based on the separability in fuzzy decision systems","volume":"52","author":"Hu","year":"2022","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.knosys.2023.110632_b42","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2022.109585","article-title":"A robust approach to attribute reduction based on double fuzzy consistency measure","volume":"253","author":"Guo","year":"2022","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.knosys.2023.110632_b43","doi-asserted-by":"crossref","first-page":"185","DOI":"10.1016\/j.ins.2022.12.074","article-title":"A soft neighborhood rough set model and its applications","volume":"624","author":"An","year":"2023","journal-title":"Inform. Sci."},{"issue":"7","key":"10.1016\/j.knosys.2023.110632_b44","first-page":"2986","article-title":"Feature selection based on neighborhood discrimination index","volume":"29","author":"Wang","year":"2018","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.knosys.2023.110632_b45","doi-asserted-by":"crossref","first-page":"933","DOI":"10.2147\/JIR.S277353","article-title":"Prognostic value of gastrokine-2 (GKN2) and its correlation with tumor-infiltrating immune cells in lung cancer and gastric cancers","volume":"13","author":"Liu","year":"2020","journal-title":"J. Inflamm. Res."},{"issue":"1","key":"10.1016\/j.knosys.2023.110632_b46","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s12931-020-01477-y","article-title":"FGL1 regulates acquired resistance to Gefitinib by inhibiting apoptosis in non-small cell lung cancer","volume":"21","author":"Sun","year":"2020","journal-title":"Respir. Res."},{"issue":"12","key":"10.1016\/j.knosys.2023.110632_b47","doi-asserted-by":"crossref","DOI":"10.1097\/MD.0000000000025154","article-title":"Identification of core genes and clinical outcomes in tumors originated from endoderm (gastric cancer and lung carcinoma) via bioinformatics analysis","volume":"100","author":"Shi","year":"2021","journal-title":"Medicine"},{"key":"10.1016\/j.knosys.2023.110632_b48","doi-asserted-by":"crossref","first-page":"10729","DOI":"10.2147\/OTT.S260436","article-title":"RTKN2 is associated with unfavorable prognosis and promotes progression in non-small-cell lung cancer","volume":"13","author":"Ji","year":"2020","journal-title":"OncoTargets Ther."},{"issue":"10","key":"10.1016\/j.knosys.2023.110632_b49","doi-asserted-by":"crossref","first-page":"2129","DOI":"10.1002\/cbin.11669","article-title":"ETV4 transcriptionally activates HES1 and promotes Stat3 phosphorylation to promote malignant behaviors of colon adenocarcinoma","volume":"45","author":"Yao","year":"2021","journal-title":"Cell Biol. Int."},{"issue":"6","key":"10.1016\/j.knosys.2023.110632_b50","doi-asserted-by":"crossref","first-page":"244","DOI":"10.1038\/cgt.2017.8","article-title":"Identification of differentially expressed genes and their upstream regulators in colorectal cancer","volume":"24","author":"Liu","year":"2017","journal-title":"Cancer Gene Ther."}],"container-title":["Knowledge-Based Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0950705123003829?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0950705123003829?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,4,27]],"date-time":"2024-04-27T18:02:12Z","timestamp":1714240932000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0950705123003829"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,8]]},"references-count":50,"alternative-id":["S0950705123003829"],"URL":"https:\/\/doi.org\/10.1016\/j.knosys.2023.110632","relation":{},"ISSN":["0950-7051"],"issn-type":[{"value":"0950-7051","type":"print"}],"subject":[],"published":{"date-parts":[[2023,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Attribute reduction based on neighborhood constrained fuzzy rough sets","name":"articletitle","label":"Article Title"},{"value":"Knowledge-Based Systems","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.knosys.2023.110632","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"110632"}}