{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T06:34:43Z","timestamp":1740119683381,"version":"3.37.3"},"reference-count":59,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,6,1]],"date-time":"2023-06-01T00:00:00Z","timestamp":1685577600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,6,1]],"date-time":"2023-06-01T00:00:00Z","timestamp":1685577600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2023,6,1]],"date-time":"2023-06-01T00:00:00Z","timestamp":1685577600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,6,1]],"date-time":"2023-06-01T00:00:00Z","timestamp":1685577600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,6,1]],"date-time":"2023-06-01T00:00:00Z","timestamp":1685577600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,6,1]],"date-time":"2023-06-01T00:00:00Z","timestamp":1685577600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,6,1]],"date-time":"2023-06-01T00:00:00Z","timestamp":1685577600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61573276","62173266","62173267","62273269","U1809202"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100002858","name":"China Postdoctoral Science Foundation","doi-asserted-by":"publisher","award":["2021M693003"],"id":[{"id":"10.13039\/501100002858","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100017596","name":"Natural Science Basic Research Program of Shaanxi Province","doi-asserted-by":"publisher","award":["2019JM111","2020JC05"],"id":[{"id":"10.13039\/501100017596","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Knowledge-Based Systems"],"published-print":{"date-parts":[[2023,6]]},"DOI":"10.1016\/j.knosys.2023.110510","type":"journal-article","created":{"date-parts":[[2023,3,30]],"date-time":"2023-03-30T08:48:54Z","timestamp":1680166134000},"page":"110510","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":3,"special_numbering":"C","title":["Smooth low-rank representation with a Grassmann manifold for tensor completion"],"prefix":"10.1016","volume":"270","author":[{"given":"Liyu","family":"Su","sequence":"first","affiliation":[]},{"given":"Jing","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Jianting","family":"Zhang","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-0789-2422","authenticated-orcid":false,"given":"Xiaoqing","family":"Tian","sequence":"additional","affiliation":[]},{"given":"Hailang","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Chaoqun","family":"Ma","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.knosys.2023.110510_b1","doi-asserted-by":"crossref","first-page":"301","DOI":"10.1016\/j.sigpro.2018.09.039","article-title":"Low rank tensor completion for multiway visual data","volume":"155","author":"Long","year":"2019","journal-title":"Signal Process."},{"issue":"6","key":"10.1016\/j.knosys.2023.110510_b2","doi-asserted-by":"crossref","first-page":"1659","DOI":"10.1109\/TNNLS.2018.2872583","article-title":"A nonconvex relaxation approach to low-rank tensor completion","volume":"30","author":"Zhang","year":"2019","journal-title":"IEEE Trans. on Neural Netw. Learn. Syst."},{"key":"10.1016\/j.knosys.2023.110510_b3","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2022.108468","article-title":"Enhanced tensor low-rank representation for clustering and denoising","volume":"243","author":"Du","year":"2022","journal-title":"Knowl.-Based Syst."},{"issue":"6","key":"10.1016\/j.knosys.2023.110510_b4","doi-asserted-by":"crossref","first-page":"1378","DOI":"10.1109\/JSTSP.2018.2873142","article-title":"Improved robust tensor principal component analysis via low-rank core matrix","volume":"12","author":"Liu","year":"2018","journal-title":"IEEE J. Sel. Topics Signal Process."},{"issue":"5","key":"10.1016\/j.knosys.2023.110510_b5","doi-asserted-by":"crossref","first-page":"1325","DOI":"10.1109\/TCSVT.2018.2841825","article-title":"Incremental tensor-based completion method for detection of stationary foreground objects","volume":"29","author":"Kajo","year":"2019","journal-title":"IEEE Trans. Circuits Syst. Video Technol."},{"key":"10.1016\/j.knosys.2023.110510_b6","doi-asserted-by":"crossref","first-page":"82","DOI":"10.1016\/j.bdr.2015.01.004","article-title":"Scalable tensor mining","volume":"2","author":"Sael","year":"2015","journal-title":"Big Data Res."},{"issue":"2","key":"10.1016\/j.knosys.2023.110510_b7","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/2915921","article-title":"Tensors for data mining and data fusion: models applications, and scalable algorithms","volume":"8","author":"Papalexakis","year":"2017","journal-title":"ACM Trans. Intell. Syst. Technol."},{"issue":"3","key":"10.1016\/j.knosys.2023.110510_b8","doi-asserted-by":"crossref","first-page":"476","DOI":"10.1109\/TPAMI.2015.2465901","article-title":"Heterogeneous tensor decomposition for clustering via manifold optimization","volume":"38","author":"Sun","year":"2016","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.knosys.2023.110510_b9","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2021.106745","article-title":"Error-robust low-rank tensor approximation for multi-view clustering","volume":"215","author":"Wang","year":"2021","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.knosys.2023.110510_b10","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2022.108503","article-title":"Tensor approximate entropy: an entropy measure for sleep scoring","volume":"245","author":"Li","year":"2022","journal-title":"Knowl.-Based Syst."},{"issue":"10","key":"10.1016\/j.knosys.2023.110510_b11","doi-asserted-by":"crossref","first-page":"4170","DOI":"10.1109\/TNNLS.2019.2952427","article-title":"Accurate tensor completion via adaptive low-rank representation","volume":"31","author":"Zhang","year":"2020","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"5","key":"10.1016\/j.knosys.2023.110510_b12","doi-asserted-by":"crossref","first-page":"1718","DOI":"10.1109\/TPAMI.2019.2954874","article-title":"Tensor low-rank representation for data recovery and clustering","volume":"43","author":"Zhou","year":"2021","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"12","key":"10.1016\/j.knosys.2023.110510_b13","doi-asserted-by":"crossref","first-page":"4784","DOI":"10.1109\/TCSVT.2021.3055039","article-title":"Multi-view spectral clustering tailored tensor low-rank representation","volume":"31","author":"Jia","year":"2021","journal-title":"IEEE Trans. Circuits Syst. Video Technol."},{"key":"10.1016\/j.knosys.2023.110510_b14","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2021.107053","article-title":"Low-rank representation with adaptive dictionary learning for subspace clustering","volume":"223","author":"Chen","year":"2021","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.knosys.2023.110510_b15","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2022.108230","article-title":"Robust low-rank representation via residual projection for image classification","volume":"241","author":"Hui","year":"2022","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.knosys.2023.110510_b16","doi-asserted-by":"crossref","first-page":"105","DOI":"10.1002\/1099-128X(200005\/06)14:3<105::AID-CEM582>3.0.CO;2-I","article-title":"Towards a standardized notation and terminology in multiway analysis","volume":"14","author":"Kiers","year":"2000","journal-title":"J. Chemometr."},{"issue":"9","key":"10.1016\/j.knosys.2023.110510_b17","doi-asserted-by":"crossref","first-page":"1751","DOI":"10.1109\/TPAMI.2015.2392756","article-title":"Bayesian CP factorization of incomplete tensors with automatic rank determination","volume":"37","author":"Zhao","year":"2015","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"4","key":"10.1016\/j.knosys.2023.110510_b18","doi-asserted-by":"crossref","first-page":"1253","DOI":"10.1137\/S0895479896305696","article-title":"A multilinear singular value decomposition","volume":"21","author":"De\u00a0Lathauwer","year":"2000","journal-title":"SIAM J. Matrix Anal. Appl."},{"issue":"1","key":"10.1016\/j.knosys.2023.110510_b19","doi-asserted-by":"crossref","first-page":"208","DOI":"10.1109\/TPAMI.2012.39","article-title":"Tensor completion for estimating missing values in visual data","volume":"35","author":"Liu","year":"2013","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"2","key":"10.1016\/j.knosys.2023.110510_b20","doi-asserted-by":"crossref","first-page":"601","DOI":"10.3934\/ipi.2015.9.601","article-title":"Parallel matrix factorization for low-rank tensor completion","volume":"9","author":"Xu","year":"2015","journal-title":"Inverse Problems Imag."},{"issue":"3","key":"10.1016\/j.knosys.2023.110510_b21","doi-asserted-by":"crossref","first-page":"641","DOI":"10.1016\/j.laa.2010.09.020","article-title":"Factorization strategies for third-order tensors","volume":"435","author":"Kilmer","year":"2011","journal-title":"Linear Algebra Appl."},{"issue":"6","key":"10.1016\/j.knosys.2023.110510_b22","doi-asserted-by":"crossref","first-page":"1511","DOI":"10.1109\/TSP.2016.2639466","article-title":"Exact tensor completion using t-svd","volume":"65","author":"Zhang","year":"2017","journal-title":"IEEE Trans. Signal Process."},{"key":"10.1016\/j.knosys.2023.110510_b23","doi-asserted-by":"crossref","first-page":"3434","DOI":"10.1109\/TIP.2021.3061908","article-title":"Logarithmic norm regularized low-rank factorization for matrix and tensor completion","volume":"30","author":"Chen","year":"2021","journal-title":"IEEE Trans. Image Process."},{"issue":"5","key":"10.1016\/j.knosys.2023.110510_b24","doi-asserted-by":"crossref","first-page":"2295","DOI":"10.1137\/090752286","article-title":"Tensor-train decomposition","volume":"33","author":"Oseledets","year":"2011","journal-title":"SIAM J. Scientific Comput."},{"issue":"5","key":"10.1016\/j.knosys.2023.110510_b25","doi-asserted-by":"crossref","first-page":"2466","DOI":"10.1109\/TIP.2017.2672439","article-title":"Efficient tensor completion for color image and video recovery: low-rank tensor train","volume":"26","author":"Bengua","year":"2017","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.knosys.2023.110510_b26","doi-asserted-by":"crossref","first-page":"100","DOI":"10.1016\/j.ins.2021.03.025","article-title":"Auto-weighted robust low-rank tensor completion via tensor-train","volume":"567","author":"Chen","year":"2021","journal-title":"Inform. Sci."},{"year":"2016","series-title":"Tensor ring decomposition","author":"Zhao","key":"10.1016\/j.knosys.2023.110510_b27"},{"key":"10.1016\/j.knosys.2023.110510_b28","doi-asserted-by":"crossref","first-page":"3568","DOI":"10.1109\/TIP.2021.3062195","article-title":"Bayesian low rank tensor ring for image recovery","volume":"30","author":"Long","year":"2021","journal-title":"IEEE Trans. Image Process."},{"issue":"6","key":"10.1016\/j.knosys.2023.110510_b29","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/2512329","article-title":"Most tensor problems are NP-hard","volume":"60","author":"Hillar","year":"2013","journal-title":"J. ACM."},{"key":"10.1016\/j.knosys.2023.110510_b30","doi-asserted-by":"crossref","first-page":"89","DOI":"10.1023\/B:JMIV.0000011321.19549.88","article-title":"An algorithm for total variation minimization and applications","volume":"20","author":"Chambolle","year":"2004","journal-title":"J. Math. Imaging Vis."},{"issue":"7","key":"10.1016\/j.knosys.2023.110510_b31","doi-asserted-by":"crossref","first-page":"4045","DOI":"10.1109\/TGRS.2012.2227764","article-title":"Deblurring and sparse unmixing for hyperspectral images","volume":"51","author":"Zhao","year":"2013","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"10","key":"10.1016\/j.knosys.2023.110510_b32","doi-asserted-by":"crossref","first-page":"2148","DOI":"10.1109\/TMI.2017.2717502","article-title":"Hybrid CS-DMRI: periodic time-variant subsampling and omnidirectional total variation based reconstruction","volume":"36","author":"Liu","year":"2017","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.knosys.2023.110510_b33","doi-asserted-by":"crossref","unstructured":"C. Bao, J.F. Cai, H. Ji, Fast sparsity-based orthogonal dictionary learning for image restoration, in: Proc. IEEE Int. Conf. Comput. Vision, 2013.","DOI":"10.1109\/ICCV.2013.420"},{"issue":"3","key":"10.1016\/j.knosys.2023.110510_b34","doi-asserted-by":"crossref","first-page":"729","DOI":"10.1007\/s11063-016-9503-4","article-title":"Sparse and truncated nuclear norm based tensor completion","volume":"45","author":"Han","year":"2017","journal-title":"Neural Process. Lett."},{"key":"10.1016\/j.knosys.2023.110510_b35","doi-asserted-by":"crossref","first-page":"87","DOI":"10.1016\/j.knosys.2019.02.035","article-title":"Structure regularized sparse coding for data representation","volume":"174","author":"Wang","year":"2019","journal-title":"Knowl.-Based Syst."},{"issue":"4","key":"10.1016\/j.knosys.2023.110510_b36","doi-asserted-by":"crossref","first-page":"944","DOI":"10.1109\/TCSVT.2019.2901311","article-title":"Low CP rank and tucker rank tensor completion for estimating missing components in image data","volume":"30","author":"Liu","year":"2020","journal-title":"IEEE Trans. Circuits Syst. Video Technol."},{"issue":"11","key":"10.1016\/j.knosys.2023.110510_b37","doi-asserted-by":"crossref","first-page":"6916","DOI":"10.1109\/TNNLS.2021.3083931","article-title":"Multilayer sparsity-based tensor decomposition for low-rank tensor completion","volume":"33","author":"Xue","year":"2022","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"3","key":"10.1016\/j.knosys.2023.110510_b38","doi-asserted-by":"crossref","first-page":"577","DOI":"10.1109\/TPAMI.2013.164","article-title":"Simultaneous tensor decomposition and completion using factor priors","volume":"36","author":"Chen","year":"2014","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.knosys.2023.110510_b39","doi-asserted-by":"crossref","DOI":"10.1109\/TCYB.2021.3140148","article-title":"When laplacian scale mixture meets three-layer transform: a parametric tensor sparsity for tensor completion","author":"Xue","year":"2022","journal-title":"IEEE Trans. Cybern. Early access"},{"key":"10.1016\/j.knosys.2023.110510_b40","doi-asserted-by":"crossref","first-page":"243","DOI":"10.1016\/j.ins.2015.07.049","article-title":"Tensor completion using total variation and low-rank matrix factorization","volume":"326","author":"Ji","year":"2016","journal-title":"Inform. Sci."},{"key":"10.1016\/j.knosys.2023.110510_b41","doi-asserted-by":"crossref","first-page":"403","DOI":"10.1016\/j.ins.2018.01.035","article-title":"Matrix factorization for low-rank tensor completion using framelet prior","volume":"436-437","author":"Jiang","year":"2018","journal-title":"Inform. Sci."},{"key":"10.1016\/j.knosys.2023.110510_b42","doi-asserted-by":"crossref","first-page":"197","DOI":"10.1016\/j.neucom.2020.12.110","article-title":"Robust low-rank tensor completion via transformed tensor nuclear norm with total variation regularization","volume":"435","author":"Qiu","year":"2021","journal-title":"Neurocomputing"},{"key":"10.1016\/j.knosys.2023.110510_b43","doi-asserted-by":"crossref","first-page":"6918","DOI":"10.1109\/TIP.2020.2995061","article-title":"Fast and accurate tensor completion with total variation regularized tensor trains","volume":"29","author":"Ko","year":"2020","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.knosys.2023.110510_b44","article-title":"Tensor ring decomposition-based model with interpretable gradient factors regularization for tensor completion","author":"Wu","year":"2022","journal-title":"Knowl.-Based Syst. Early access"},{"issue":"5","key":"10.1016\/j.knosys.2023.110510_b45","doi-asserted-by":"crossref","first-page":"2053","DOI":"10.1109\/TIT.2010.2044061","article-title":"The power of convex relaxation: near-optimal matrix completion","volume":"56","author":"Candes","year":"2010","journal-title":"IEEE Trans. Inf. Theory."},{"issue":"5","key":"10.1016\/j.knosys.2023.110510_b46","doi-asserted-by":"crossref","first-page":"3047","DOI":"10.1109\/TIT.2011.2173156","article-title":"Robust PCA via outlier pursuit","volume":"58","author":"Xu","year":"2012","journal-title":"IEEE Trans. Inf. Theory."},{"issue":"8","key":"10.1016\/j.knosys.2023.110510_b47","doi-asserted-by":"crossref","first-page":"1359","DOI":"10.1109\/JPROC.2018.2844126","article-title":"Static and dynamic robust PCA and matrix completion: a review","volume":"106","author":"Vaswani","year":"2018","journal-title":"Proc. IEEE"},{"key":"10.1016\/j.knosys.2023.110510_b48","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2020.105794","article-title":"Multi-focus image fusion based on dynamic threshold neural P systems and surfacelet transform","volume":"196","author":"Li","year":"2020","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.knosys.2023.110510_b49","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2021.107087","article-title":"Joint image fusion and denoising via three-layer decomposition and sparse representation","volume":"224","author":"Li","year":"2021","journal-title":"Knowl.-Based Syst."},{"issue":"5","key":"10.1016\/j.knosys.2023.110510_b50","doi-asserted-by":"crossref","first-page":"2980","DOI":"10.1109\/TIT.2010.2046205","article-title":"Matrix completion from a few entries","volume":"56","author":"Keshavan","year":"2010","journal-title":"IEEE Trans. Inf. Theory"},{"issue":"1","key":"10.1016\/j.knosys.2023.110510_b51","doi-asserted-by":"crossref","first-page":"237","DOI":"10.1109\/TIT.2011.2171521","article-title":"A geometric approach to low-rank matrix completion","volume":"58","author":"Dai","year":"2012","journal-title":"IEEE Trans. Inf. Theory"},{"key":"10.1016\/j.knosys.2023.110510_b52","doi-asserted-by":"crossref","first-page":"200","DOI":"10.1016\/j.laa.2015.02.027","article-title":"Low-rank matrix completion via preconditioned optimization on the Grassmann manifold","volume":"475","author":"Boumal","year":"2015","journal-title":"Linear Algebra Appl."},{"key":"10.1016\/j.knosys.2023.110510_b53","doi-asserted-by":"crossref","first-page":"2639","DOI":"10.1109\/TSP.2021.3073544","article-title":"Robust low-rank matrix completion via an alternating manifold proximal gradient continuation method","volume":"69","author":"Huang","year":"2021","journal-title":"IEEE Trans. Signal Process."},{"issue":"3","key":"10.1016\/j.knosys.2023.110510_b54","doi-asserted-by":"crossref","first-page":"455","DOI":"10.1137\/07070111X","article-title":"Tensor decompositions and applications","volume":"51","author":"Kolda","year":"2009","journal-title":"SIAM Rev."},{"key":"10.1016\/j.knosys.2023.110510_b55","doi-asserted-by":"crossref","first-page":"85","DOI":"10.1016\/S0377-0427(00)00393-9","article-title":"The ubiquitous kronecker product","volume":"123","author":"Loan","year":"2000","journal-title":"J. Comput. Appl. Math."},{"year":"2009","series-title":"Optimization algorithms on matrix manifolds","author":"Absil","key":"10.1016\/j.knosys.2023.110510_b56"},{"issue":"4","key":"10.1016\/j.knosys.2023.110510_b57","doi-asserted-by":"crossref","first-page":"1956","DOI":"10.1137\/080738970","article-title":"A singular value thresholding algorithm for matrix completion","volume":"20","author":"Cai","year":"2010","journal-title":"SIAM J. Optim."},{"issue":"1","key":"10.1016\/j.knosys.2023.110510_b58","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1561\/2200000016","article-title":"Distributed optimization and statistical learning via the alternating direction method of multipliers","volume":"3","author":"Boyd","year":"2010","journal-title":"Found. Trends Mach. Learn."},{"issue":"4","key":"10.1016\/j.knosys.2023.110510_b59","doi-asserted-by":"crossref","first-page":"600","DOI":"10.1109\/TIP.2003.819861","article-title":"Image quality assessment: from error visibility to structural similarity","volume":"13","author":"Wang","year":"2004","journal-title":"IEEE Trans. Image Process."}],"container-title":["Knowledge-Based Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0950705123002605?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0950705123002605?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,4,27]],"date-time":"2024-04-27T17:57:30Z","timestamp":1714240650000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0950705123002605"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,6]]},"references-count":59,"alternative-id":["S0950705123002605"],"URL":"https:\/\/doi.org\/10.1016\/j.knosys.2023.110510","relation":{},"ISSN":["0950-7051"],"issn-type":[{"type":"print","value":"0950-7051"}],"subject":[],"published":{"date-parts":[[2023,6]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Smooth low-rank representation with a Grassmann manifold for tensor completion","name":"articletitle","label":"Article Title"},{"value":"Knowledge-Based Systems","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.knosys.2023.110510","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"110510"}}