{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,28]],"date-time":"2025-03-28T11:28:03Z","timestamp":1743161283456,"version":"3.37.3"},"reference-count":32,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["11101071"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Knowledge-Based Systems"],"published-print":{"date-parts":[[2023,5]]},"DOI":"10.1016\/j.knosys.2023.110481","type":"journal-article","created":{"date-parts":[[2023,3,15]],"date-time":"2023-03-15T07:57:15Z","timestamp":1678867035000},"page":"110481","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":3,"special_numbering":"C","title":["RNNCTPs: A neural symbolic reasoning method using dynamic knowledge partitioning technology"],"prefix":"10.1016","volume":"268","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-0014-1116","authenticated-orcid":false,"given":"Yu-hao","family":"Wu","sequence":"first","affiliation":[]},{"given":"Hou-biao","family":"Li","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"2","key":"10.1016\/j.knosys.2023.110481_b1","first-page":"1","article-title":"Towards a definition of knowledge graphs","volume":"48","author":"Ehrlinger","year":"2016","journal-title":"SEMANTiCS (Posters, Demos, SuCCESS)"},{"key":"10.1016\/j.knosys.2023.110481_b2","doi-asserted-by":"crossref","unstructured":"Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam\u00a0R Hruschka, Tom\u00a0M Mitchell, Toward an architecture for never-ending language learning, in: Twenty-Fourth AAAI Conference on Artificial Intelligence, 2010, pp. 1306\u20131313.","DOI":"10.1609\/aaai.v24i1.7519"},{"issue":"4","key":"10.1016\/j.knosys.2023.110481_b3","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3012704","article-title":"A survey of link prediction in complex networks","volume":"49","author":"Mart\u00ednez","year":"2016","journal-title":"ACM Comput. Surv."},{"key":"10.1016\/j.knosys.2023.110481_b4","first-page":"2787","article-title":"Translating embeddings for modeling multi-relational data","volume":"26","author":"Bordes","year":"2013","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.knosys.2023.110481_b5","unstructured":"Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, Xuan Zhu, Learning entity and relation embeddings for knowledge graph completion, in: Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015, pp. 2181\u20132187."},{"year":"2019","series-title":"Rotate: Knowledge graph embedding by relational rotation in complex space","author":"Sun","key":"10.1016\/j.knosys.2023.110481_b6"},{"key":"10.1016\/j.knosys.2023.110481_b7","series-title":"ICML","first-page":"809","article-title":"A three-way model for collective learning on multi-relational data","author":"Nickel","year":"2011"},{"year":"2014","series-title":"Embedding entities and relations for learning and inference in knowledge bases","author":"Yang","key":"10.1016\/j.knosys.2023.110481_b8"},{"key":"10.1016\/j.knosys.2023.110481_b9","doi-asserted-by":"crossref","unstructured":"Maximilian Nickel, Lorenzo Rosasco, Tomaso Poggio, Holographic embeddings of knowledge graphs, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 30, 2016, pp. 1955\u20131961.","DOI":"10.1609\/aaai.v30i1.10314"},{"key":"10.1016\/j.knosys.2023.110481_b10","series-title":"International Conference on Machine Learning","first-page":"2071","article-title":"Complex embeddings for simple link prediction","author":"Trouillon","year":"2016"},{"key":"10.1016\/j.knosys.2023.110481_b11","doi-asserted-by":"crossref","unstructured":"Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, Sebastian Riedel, Convolutional 2D knowledge graph embeddings, in: Thirty-Second AAAI Conference on Artificial Intelligence, 2018, pp. 1811\u20131818.","DOI":"10.1609\/aaai.v32i1.11573"},{"key":"10.1016\/j.knosys.2023.110481_b12","doi-asserted-by":"crossref","unstructured":"Luis\u00a0Antonio Gal\u00e1rraga, Christina Teflioudi, Katja Hose, Fabian Suchanek, AMIE: association rule mining under incomplete evidence in ontological knowledge bases, in: Proceedings of the 22nd International Conference on World Wide Web, 2013, pp. 413\u2013422.","DOI":"10.1145\/2488388.2488425"},{"issue":"6","key":"10.1016\/j.knosys.2023.110481_b13","doi-asserted-by":"crossref","first-page":"707","DOI":"10.1007\/s00778-015-0394-1","article-title":"Fast rule mining in ontological knowledge bases with AMIE++","volume":"24","author":"Gal\u00e1rraga","year":"2015","journal-title":"VLDB J."},{"key":"10.1016\/j.knosys.2023.110481_b14","doi-asserted-by":"crossref","unstructured":"Pouya\u00a0Ghiasnezhad Omran, Kewen Wang, Zhe Wang, Scalable Rule Learning via Learning Representation, in: IJCAI, 2018, pp. 2149\u20132155.","DOI":"10.24963\/ijcai.2018\/297"},{"key":"10.1016\/j.knosys.2023.110481_b15","series-title":"International Semantic Web Conference","first-page":"72","article-title":"Rule learning from knowledge graphs guided by embedding models","author":"Ho","year":"2018"},{"key":"10.1016\/j.knosys.2023.110481_b16","doi-asserted-by":"crossref","unstructured":"Guanglin Niu, Yongfei Zhang, Bo Li, Peng Cui, Si Liu, Jingyang Li, Xiaowei Zhang, Rule-guided compositional representation learning on knowledge graphs, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, 2020, pp. 2950\u20132958.","DOI":"10.1609\/aaai.v34i03.5687"},{"key":"10.1016\/j.knosys.2023.110481_b17","series-title":"Proceedings of the 31st International Conference on Neural Information Processing Systems","first-page":"2316","article-title":"Differentiable learning of logical rules for knowledge base reasoning","author":"Yang","year":"2017"},{"year":"2017","series-title":"Go for a walk and arrive at the answer: Reasoning over paths in knowledge bases using reinforcement learning","author":"Das","key":"10.1016\/j.knosys.2023.110481_b18"},{"key":"10.1016\/j.knosys.2023.110481_b19","unstructured":"Manoel Vitor\u00a0Macedo Fran\u00e7a, Gerson Zaverucha, Artur S\u00a0d\u2019Avila Garcez, Neural relational learning through semi-propositionalization of bottom clauses, in: 2015 AAAI Spring Symposium Series, 2015."},{"key":"10.1016\/j.knosys.2023.110481_b20","series-title":"Proceedings of the 31st International Conference on Neural Information Processing Systems","first-page":"3791","article-title":"End-to-end differentiable proving","author":"Rocktaschel","year":"2017"},{"key":"10.1016\/j.knosys.2023.110481_b21","doi-asserted-by":"crossref","unstructured":"Pasquale Minervini, Matko Bo\u0161njak, Tim Rockt\u00e4schel, Sebastian Riedel, Edward Grefenstette, Differentiable reasoning on large knowledge bases and natural language, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, No. 04, 2020, pp. 5182\u20135190.","DOI":"10.1609\/aaai.v34i04.5962"},{"year":"2021","series-title":"Improving the performance of backward chained behavior trees using reinforcement learning","author":"Karta\u0161ev","key":"10.1016\/j.knosys.2023.110481_b22"},{"year":"2020","series-title":"Neural-symbolic reasoning over knowledge graph for multi-stage explainable recommendation","author":"Xian","key":"10.1016\/j.knosys.2023.110481_b23"},{"key":"10.1016\/j.knosys.2023.110481_b24","doi-asserted-by":"crossref","unstructured":"Yikun Xian, Zuohui Fu, Handong Zhao, Yingqiang Ge, Xu Chen, Qiaoying Huang, Shijie Geng, Zhou Qin, Gerard De\u00a0Melo, Shan Muthukrishnan, et al., CAFE: Coarse-to-fine neural symbolic reasoning for explainable recommendation, in: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, 2020, pp. 1645\u20131654.","DOI":"10.1145\/3340531.3412038"},{"key":"10.1016\/j.knosys.2023.110481_b25","series-title":"International Conference on Machine Learning","first-page":"6938","article-title":"Learning reasoning strategies in end-to-end differentiable proving","author":"Minervini","year":"2020"},{"year":"2022","series-title":"Neural theorem provers Delineating Search Area using RNN","author":"Wu","key":"10.1016\/j.knosys.2023.110481_b26"},{"issue":"suppl_1","key":"10.1016\/j.knosys.2023.110481_b27","doi-asserted-by":"crossref","first-page":"D267","DOI":"10.1093\/nar\/gkh061","article-title":"The unified medical language system (UMLS): integrating biomedical terminology","volume":"32","author":"Bodenreider","year":"2004","journal-title":"Nucleic Acids Res."},{"key":"10.1016\/j.knosys.2023.110481_b28","unstructured":"Stanley Kok, Pedro Domingos, Statistical predicate invention, in: Proceedings of the 24th International Conference on Machine Learning, 2007, pp. 433\u2013440."},{"key":"10.1016\/j.knosys.2023.110481_b29","first-page":"3167","article-title":"A latent factor model for highly multi-relational data","volume":"25","author":"Jenatton","year":"2012","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.knosys.2023.110481_b30","series-title":"Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing","first-page":"1400","article-title":"Key-value memory networks for directly reading documents","author":"Miller","year":"2016"},{"key":"10.1016\/j.knosys.2023.110481_b31","series-title":"VLDB\u201902: Proceedings of the 28th International Conference on Very Large Databases","first-page":"287","article-title":"Continuous nearest neighbor search","author":"Tao","year":"2002"},{"key":"10.1016\/j.knosys.2023.110481_b32","unstructured":"Guillaume Bouchard, Sameer Singh, Theo Trouillon, On approximate reasoning capabilities of low-rank vector spaces, in: 2015 AAAI Spring Symposium Series, 2015, pp. 6\u20139."}],"container-title":["Knowledge-Based Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0950705123002319?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0950705123002319?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,2,10]],"date-time":"2024-02-10T22:06:51Z","timestamp":1707602811000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0950705123002319"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,5]]},"references-count":32,"alternative-id":["S0950705123002319"],"URL":"https:\/\/doi.org\/10.1016\/j.knosys.2023.110481","relation":{},"ISSN":["0950-7051"],"issn-type":[{"type":"print","value":"0950-7051"}],"subject":[],"published":{"date-parts":[[2023,5]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"RNNCTPs: A neural symbolic reasoning method using dynamic knowledge partitioning technology","name":"articletitle","label":"Article Title"},{"value":"Knowledge-Based Systems","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.knosys.2023.110481","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"110481"}}