{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,19]],"date-time":"2025-03-19T14:25:46Z","timestamp":1742394346526},"reference-count":62,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Knowledge-Based Systems"],"published-print":{"date-parts":[[2023,5]]},"DOI":"10.1016\/j.knosys.2023.110421","type":"journal-article","created":{"date-parts":[[2023,3,5]],"date-time":"2023-03-05T07:27:28Z","timestamp":1678001248000},"page":"110421","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":10,"special_numbering":"C","title":["Cost-sensitive max-margin feature selection for SVM using alternated sorting method genetic algorithm"],"prefix":"10.1016","volume":"267","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-9406-8326","authenticated-orcid":false,"given":"Khalid Y.","family":"Aram","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7726-6179","authenticated-orcid":false,"given":"Sarah S.","family":"Lam","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4302-6943","authenticated-orcid":false,"given":"Mohammad T.","family":"Khasawneh","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.knosys.2023.110421_b1","doi-asserted-by":"crossref","first-page":"7776","DOI":"10.1109\/ACCESS.2017.2696365","article-title":"Machine learning with big data: Challenges and approaches","volume":"5","author":"L\u2019Heureux","year":"2017","journal-title":"IEEE Access"},{"issue":"2004","key":"10.1016\/j.knosys.2023.110421_b2","first-page":"1205","article-title":"Efficient feature selection via analysis of relevance and redundancy","volume":"5","author":"Yu","year":"2004","journal-title":"J. Mach. Learn. Res."},{"issue":"1","key":"10.1016\/j.knosys.2023.110421_b3","doi-asserted-by":"crossref","first-page":"16","DOI":"10.1016\/j.compeleceng.2013.11.024","article-title":"A survey on feature selection methods","volume":"40","author":"Chandrashekar","year":"2014","journal-title":"Comput. Electr. Eng."},{"key":"10.1016\/j.knosys.2023.110421_b4","first-page":"1157","article-title":"An introduction to variable and feature selection","volume":"3","author":"Guyon","year":"2003","journal-title":"J. Mach. Learn. Res."},{"issue":"3","key":"10.1016\/j.knosys.2023.110421_b5","doi-asserted-by":"crossref","first-page":"584","DOI":"10.1016\/j.patcog.2009.09.003","article-title":"Optimal feature selection for support vector machines","volume":"43","author":"Nguyen","year":"2010","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.knosys.2023.110421_b6","series-title":"Controlling False Alarms with Support Vector Machines. Vol. 5","first-page":"V","author":"Davenport","year":"2006"},{"key":"10.1016\/j.knosys.2023.110421_b7","series-title":"Imbalanced Learning","first-page":"83","article-title":"Class imbalance learning methods for support vector machines","author":"Batuwita","year":"2013"},{"key":"10.1016\/j.knosys.2023.110421_b8","doi-asserted-by":"crossref","first-page":"163","DOI":"10.1016\/j.neucom.2014.08.075","article-title":"Surrogate-assisted multi-objective model selection for support vector machines","volume":"150","author":"Rosales-P\u00e9rez","year":"2015","journal-title":"Neurocomputing"},{"issue":"1","key":"10.1016\/j.knosys.2023.110421_b9","doi-asserted-by":"crossref","first-page":"67","DOI":"10.1109\/4235.585893","article-title":"No free lunch theorems for optimization","volume":"1","author":"Wolpert","year":"1997","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"1","key":"10.1016\/j.knosys.2023.110421_b10","doi-asserted-by":"crossref","first-page":"40","DOI":"10.1016\/j.knosys.2010.07.003","article-title":"An effective feature selection method for hyperspectral image classification based on genetic algorithm and support vector machine","volume":"24","author":"Li","year":"2011","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.knosys.2023.110421_b11","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.knosys.2017.07.005","article-title":"An efficient intrusion detection system based on hypergraph\u2014Genetic algorithm for parameter optimization and feature selection in support vector machine","volume":"134","author":"Gauthama\u00a0Raman","year":"2017","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.knosys.2023.110421_b12","doi-asserted-by":"crossref","first-page":"51","DOI":"10.1016\/j.patrec.2017.04.011","article-title":"Max-margin feature selection","volume":"95","author":"Prasad","year":"2017","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.knosys.2023.110421_b13","series-title":"The Nature of Statistical Learning Theory","author":"Vapnik","year":"1995"},{"issue":"3","key":"10.1016\/j.knosys.2023.110421_b14","doi-asserted-by":"crossref","first-page":"736","DOI":"10.1016\/j.cmpb.2013.12.005","article-title":"Hybridization between multi-objective genetic algorithm and support vector machine for feature selection in walker-assisted gait","volume":"113","author":"Martins","year":"2014","journal-title":"Comput. Methods Programs Biomed."},{"key":"10.1016\/j.knosys.2023.110421_b15","doi-asserted-by":"crossref","first-page":"205","DOI":"10.1016\/j.neucom.2016.09.076","article-title":"Online fault detection methods for chillers combining extended kalman filter and recursive one-class SVM","volume":"228","author":"Yan","year":"2017","journal-title":"Neurocomputing"},{"issue":"5","key":"10.1016\/j.knosys.2023.110421_b16","doi-asserted-by":"crossref","first-page":"5197","DOI":"10.1016\/j.eswa.2010.10.041","article-title":"Feature selection and parameter optimization for support vector machines: A new approach based on genetic algorithm with feature chromosomes","volume":"38","author":"Zhao","year":"2011","journal-title":"Expert Syst. Appl."},{"issue":"2","key":"10.1016\/j.knosys.2023.110421_b17","doi-asserted-by":"crossref","first-page":"1391","DOI":"10.1016\/j.eswa.2007.11.014","article-title":"Selecting of the optimal feature subset and kernel parameters in digital modulation classification by using hybrid genetic algorithm\u2013support vector machines: HGASVM","volume":"36","author":"Avci","year":"2009","journal-title":"Expert Syst. Appl."},{"issue":"8","key":"10.1016\/j.knosys.2023.110421_b18","doi-asserted-by":"crossref","first-page":"11352","DOI":"10.1016\/j.eswa.2009.03.022","article-title":"Fault diagnosis of power transformer based on support vector machine with genetic algorithm","volume":"36","author":"Fei","year":"2009","journal-title":"Expert Syst. Appl."},{"issue":"16","key":"10.1016\/j.knosys.2023.110421_b19","doi-asserted-by":"crossref","first-page":"887","DOI":"10.1016\/j.ipl.2009.03.029","article-title":"Sensitivity and specificity based multiobjective approach for feature selection: Application to cancer diagnosis","volume":"109","author":"Garc\u00eda-Nieto","year":"2009","journal-title":"Inform. Process. Lett."},{"issue":"1","key":"10.1016\/j.knosys.2023.110421_b20","doi-asserted-by":"crossref","first-page":"208","DOI":"10.1016\/j.asoc.2009.11.010","article-title":"A novel hybrid feature selection method for microarray data analysis","volume":"11","author":"Lee","year":"2011","journal-title":"Appl. Soft Comput."},{"issue":"10","key":"10.1016\/j.knosys.2023.110421_b21","doi-asserted-by":"crossref","first-page":"3918","DOI":"10.1016\/j.eswa.2012.12.086","article-title":"A maximum-margin genetic algorithm for misclassification cost minimizing feature selection problem","volume":"40","author":"Pendharkar","year":"2013","journal-title":"Expert Syst. Appl."},{"issue":"1","key":"10.1016\/j.knosys.2023.110421_b22","doi-asserted-by":"crossref","first-page":"59","DOI":"10.1007\/s12293-015-0153-2","article-title":"A memetic algorithm with support vector machine for feature selection and classification","volume":"7","author":"Nekkaa","year":"2015","journal-title":"Memet. Comput."},{"key":"10.1016\/j.knosys.2023.110421_b23","article-title":"A parallel genetic algorithm based feature selection and parameter optimization for support vector machine","volume":"2016","author":"Chen","year":"2016","journal-title":"Sci. Program."},{"issue":"2","key":"10.1016\/j.knosys.2023.110421_b24","doi-asserted-by":"crossref","first-page":"455","DOI":"10.1007\/s10489-016-0843-6","article-title":"Feature weighting and SVM parameters optimization based on genetic algorithms for classification problems","volume":"46","author":"Phan","year":"2017","journal-title":"Appl. Intell."},{"issue":"2","key":"10.1016\/j.knosys.2023.110421_b25","doi-asserted-by":"crossref","first-page":"261","DOI":"10.1007\/s10462-017-9543-9","article-title":"A multi-objective genetic algorithm for simultaneous model and feature selection for support vector machines","volume":"50","author":"Bouraoui","year":"2018","journal-title":"Artif. Intell. Rev."},{"key":"10.1016\/j.knosys.2023.110421_b26","doi-asserted-by":"crossref","first-page":"323","DOI":"10.1016\/j.asoc.2018.11.001","article-title":"GA-SVM based feature selection and parameter optimization in hospitalization expense modeling","volume":"75","author":"Tao","year":"2019","journal-title":"Appl. Soft Comput."},{"issue":"1","key":"10.1016\/j.knosys.2023.110421_b27","doi-asserted-by":"crossref","first-page":"23","DOI":"10.1023\/A:1025667309714","article-title":"Theoretical and empirical analysis of ReliefF and RReliefF","volume":"53","author":"Robnik-\u0160ikonja","year":"2003","journal-title":"Mach. Learn."},{"key":"10.1016\/j.knosys.2023.110421_b28","doi-asserted-by":"crossref","first-page":"2426","DOI":"10.1016\/j.neucom.2017.11.016","article-title":"A two-stage feature selection and intelligent fault diagnosis method for rotating machinery using hybrid filter and wrapper method","volume":"275","author":"Zhang","year":"2018","journal-title":"Neurocomputing"},{"key":"10.1016\/j.knosys.2023.110421_b29","doi-asserted-by":"crossref","first-page":"307","DOI":"10.1016\/j.cam.2017.04.036","article-title":"A hybrid system with filter approach and multiple population genetic algorithm for feature selection in credit scoring","volume":"329","author":"Wang","year":"2018","journal-title":"J. Comput. Appl. Math."},{"key":"10.1016\/j.knosys.2023.110421_b30","doi-asserted-by":"crossref","first-page":"58817","DOI":"10.1109\/ACCESS.2020.2982366","article-title":"Investigate contribution of multi-microseismic data to rockburst risk prediction using support vector machine with genetic algorithm","volume":"8","author":"Ji","year":"2020","journal-title":"IEEE Access"},{"issue":"1","key":"10.1016\/j.knosys.2023.110421_b31","doi-asserted-by":"crossref","first-page":"153","DOI":"10.1515\/comp-2020-0199","article-title":"Efficient stock-market prediction using ensemble support vector machine","volume":"10","author":"Nti","year":"2020","journal-title":"Open Comput. Sci."},{"key":"10.1016\/j.knosys.2023.110421_b32","doi-asserted-by":"crossref","DOI":"10.1016\/j.epsr.2020.106879","article-title":"An advanced genetic algorithm with improved support vector machine for multi-class classification of real power quality events","volume":"191","author":"Rahul","year":"2021","journal-title":"Electr. Power Syst. Res."},{"key":"10.1016\/j.knosys.2023.110421_b33","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2022.117485","article-title":"Support Vector Machine with feature selection: A multiobjective approach","volume":"204","author":"Alcaraz","year":"2022","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.knosys.2023.110421_b34","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2020.106488","article-title":"Multi-view generalized support vector machine via mining the inherent relationship between views with applications to face and fire smoke recognition","volume":"210","author":"Cheng","year":"2020","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.knosys.2023.110421_b35","first-page":"1","article-title":"Multiview learning with robust double-sided twin SVM","author":"Ye","year":"2021","journal-title":"IEEE Trans. Cybern."},{"issue":"5","key":"10.1016\/j.knosys.2023.110421_b36","doi-asserted-by":"crossref","first-page":"1084","DOI":"10.1109\/TPDS.2021.3101155","article-title":"Parallel and distributed structured SVM training","volume":"33","author":"Jiang","year":"2022","journal-title":"IEEE Trans. Parallel Distrib. Syst."},{"key":"10.1016\/j.knosys.2023.110421_b37","doi-asserted-by":"crossref","DOI":"10.1016\/j.socl.2021.100014","article-title":"Parallel SVM model for forest fire prediction","volume":"3","author":"Singh","year":"2021","journal-title":"Soft Comput. Lett."},{"key":"10.1016\/j.knosys.2023.110421_b38","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2022.116683","article-title":"Linear cost-sensitive max-margin embedded feature selection for SVM","volume":"197","author":"Aram","year":"2022","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.knosys.2023.110421_b39","doi-asserted-by":"crossref","first-page":"124","DOI":"10.1016\/j.foodchem.2013.10.020","article-title":"Simultaneous data pre-processing and SVM classification model selection based on a parallel genetic algorithm applied to spectroscopic data of olive oils","volume":"148","author":"Devos","year":"2014","journal-title":"Food Chem."},{"key":"10.1016\/j.knosys.2023.110421_b40","doi-asserted-by":"crossref","first-page":"280","DOI":"10.1016\/j.apenergy.2015.10.148","article-title":"An NSGA-II based multi-objective optimization for combined gas and electricity network expansion planning","volume":"167","author":"Hu","year":"2016","journal-title":"Appl. Energy"},{"key":"10.1016\/j.knosys.2023.110421_b41","series-title":"Python: A Dynamic, Open Source Programming Language, Vol. 78","author":"Team","year":"2015"},{"key":"10.1016\/j.knosys.2023.110421_b42","series-title":"Esa\/Pagmo2: Pagmo 2.11.1","author":"Biscani","year":"2019"},{"key":"10.1016\/j.knosys.2023.110421_b43","author":"UCI Machine Learning Repository","year":"2007"},{"issue":"5439","key":"10.1016\/j.knosys.2023.110421_b44","doi-asserted-by":"crossref","first-page":"531","DOI":"10.1126\/science.286.5439.531","article-title":"Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring","volume":"286","author":"Golub","year":"1999","journal-title":"Science"},{"issue":"4","key":"10.1016\/j.knosys.2023.110421_b45","first-page":"381","article-title":"Handwritten digit recognition by combined classifiers","volume":"34","author":"van Breukelen","year":"1998","journal-title":"Kybernetika"},{"key":"10.1016\/j.knosys.2023.110421_b46","series-title":"Advances in Neural Information Processing Systems","first-page":"216","article-title":"A comparison of dynamic reposing and tangent distance for drug activity prediction","author":"Dietterich","year":"1994"},{"issue":"4","key":"10.1016\/j.knosys.2023.110421_b47","doi-asserted-by":"crossref","first-page":"867","DOI":"10.1021\/ci4000213","article-title":"Quantitative structure\u2013activity relationship models for ready biodegradability of chemicals","volume":"53","author":"Mansouri","year":"2013","journal-title":"J. Chem. Inf. Model."},{"key":"10.1016\/j.knosys.2023.110421_b48","series-title":"Structured Induction in Expert Systems","author":"Shapiro","year":"1987"},{"issue":"1","key":"10.1016\/j.knosys.2023.110421_b49","doi-asserted-by":"crossref","first-page":"16","DOI":"10.1186\/s12911-020-1023-5","article-title":"Machine learning can predict survival of patients with heart failure from serum creatinine and ejection fraction alone","volume":"20","author":"Chicco","year":"2020","journal-title":"BMC Med. Inform. Decis. Mak."},{"key":"10.1016\/j.knosys.2023.110421_b50","series-title":"9th Nation Conference on Artificial Intelligence (AAAI-91)","first-page":"572","article-title":"A general method for improving multiclass inductive learning programs","author":"Dietterich","year":"1991"},{"key":"10.1016\/j.knosys.2023.110421_b51","series-title":"Advances in Neural Information Processing Systems, Vol. 14","first-page":"681","article-title":"A kernel method for multi-labelled classification","author":"Elisseeff","year":"2001"},{"key":"10.1016\/j.knosys.2023.110421_b52","doi-asserted-by":"crossref","DOI":"10.1108\/03684929710176502","article-title":"CLIP3: Cover learning using integer programming","author":"Cios","year":"1997","journal-title":"Kybernetes"},{"issue":"5","key":"10.1016\/j.knosys.2023.110421_b53","doi-asserted-by":"crossref","first-page":"116","DOI":"10.1038\/scientificamerican0583-116","article-title":"Computer-intensive methods in statistics","volume":"248","author":"Diaconis","year":"1983","journal-title":"Sci. Am."},{"issue":"1","key":"10.1016\/j.knosys.2023.110421_b54","doi-asserted-by":"crossref","first-page":"81","DOI":"10.1016\/0095-0696(78)90006-2","article-title":"Hedonic housing prices and the demand for clean air","volume":"5","author":"Harrison\u00a0Jr","year":"1978","journal-title":"J. Environ. Econ. Manag."},{"key":"10.1016\/j.knosys.2023.110421_b55","series-title":"2011 IEEE International Conference on High Performance Computing and Communications","first-page":"701","article-title":"A dilemma in assessing stability of feature selection algorithms","author":"Alelyani","year":"2011"},{"issue":"1","key":"10.1016\/j.knosys.2023.110421_b56","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1007\/s10115-006-0040-8","article-title":"Stability of feature selection algorithms: A study on high-dimensional spaces","volume":"12","author":"Kalousis","year":"2007","journal-title":"Knowl. Inf. Syst."},{"issue":"1","key":"10.1016\/j.knosys.2023.110421_b57","first-page":"6345","article-title":"On the stability of feature selection algorithms","volume":"18","author":"Nogueira","year":"2017","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.knosys.2023.110421_b58","series-title":"Python Tutorial","author":"Van\u00a0Rossum","year":"1995"},{"key":"10.1016\/j.knosys.2023.110421_b59","series-title":"ASMGA: Alternated Sorting Method Genetic Algorithm [Python 3.7]","author":"Aram","year":"2022"},{"key":"10.1016\/j.knosys.2023.110421_b60","series-title":"International Joint Conference on AI, Vol. 55","first-page":"60","article-title":"Controlling the sensitivity of support vector machines","author":"Veropoulos","year":"1999"},{"issue":"3","key":"10.1016\/j.knosys.2023.110421_b61","doi-asserted-by":"crossref","first-page":"234","DOI":"10.1016\/0022-2496(77)90033-5","article-title":"A scaling method for priorities in hierarchical structures","volume":"15","author":"Saaty","year":"1977","journal-title":"J. Math. Psych."},{"key":"10.1016\/j.knosys.2023.110421_b62","series-title":"Proceedings of the 13th International Conference on, Intelligent Systems Application to Power Systems","first-page":"84","article-title":"Pareto multi objective optimization","author":"Ngatchou","year":"2005"}],"container-title":["Knowledge-Based Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0950705123001715?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0950705123001715?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,3,26]],"date-time":"2023-03-26T00:38:38Z","timestamp":1679791118000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0950705123001715"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,5]]},"references-count":62,"alternative-id":["S0950705123001715"],"URL":"https:\/\/doi.org\/10.1016\/j.knosys.2023.110421","relation":{},"ISSN":["0950-7051"],"issn-type":[{"value":"0950-7051","type":"print"}],"subject":[],"published":{"date-parts":[[2023,5]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Cost-sensitive max-margin feature selection for SVM using alternated sorting method genetic algorithm","name":"articletitle","label":"Article Title"},{"value":"Knowledge-Based Systems","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.knosys.2023.110421","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"110421"}}