{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,2]],"date-time":"2024-08-02T07:51:30Z","timestamp":1722585090985},"reference-count":48,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61472095"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100005046","name":"Natural Science Foundation of Heilongjiang Province","doi-asserted-by":"publisher","award":["LH2020F023"],"id":[{"id":"10.13039\/501100005046","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Knowledge-Based Systems"],"published-print":{"date-parts":[[2023,3]]},"DOI":"10.1016\/j.knosys.2023.110330","type":"journal-article","created":{"date-parts":[[2023,1,21]],"date-time":"2023-01-21T11:15:45Z","timestamp":1674299745000},"page":"110330","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":6,"special_numbering":"C","title":["PPO-TA: Adaptive task allocation via Proximal Policy Optimization for spatio-temporal crowdsourcing"],"prefix":"10.1016","volume":"264","author":[{"given":"Bingxu","family":"Zhao","sequence":"first","affiliation":[]},{"given":"Hongbin","family":"Dong","sequence":"additional","affiliation":[]},{"given":"Yingjie","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Tingwei","family":"Pan","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"11","key":"10.1016\/j.knosys.2023.110330_b1","doi-asserted-by":"crossref","first-page":"32","DOI":"10.1109\/MCOM.2011.6069707","article-title":"Mobile crowdsensing: current state and future challenges","volume":"49","author":"Ganti","year":"2011","journal-title":"IEEE Commun. Mag."},{"issue":"1","key":"10.1016\/j.knosys.2023.110330_b2","article-title":"Mobile crowd sensing and computing: The review of an emerging human-powered sensing paradigm","volume":"48","author":"Bin","year":"2015","journal-title":"ACM Comput. Surv."},{"key":"10.1016\/j.knosys.2023.110330_b3","unstructured":"\u201dAmazon Mechanical Turks\u201d, https:\/\/www.mturk.com\/."},{"key":"10.1016\/j.knosys.2023.110330_b4","unstructured":"\u201dUpwork\u201d, https:\/\/www.upwork.com\/."},{"key":"10.1016\/j.knosys.2023.110330_b5","series-title":"KDD \u201921: The 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event, Singapore, August 14-18, 2021","first-page":"3549","article-title":"Learning to assign: Towards fair task assignment in large-scale ride hailing","author":"Shi","year":"2021"},{"key":"10.1016\/j.knosys.2023.110330_b6","series-title":"Location and Context Awareness, 4th International Symposium, LoCA 2009, Tokyo, Japan, May 7-8, 2009, Proceedings, Vol. 5561","first-page":"52","article-title":"Using context annotated mobility profiles to recruit data collectors in participatory sensing","author":"Reddy","year":"2009"},{"key":"10.1016\/j.knosys.2023.110330_b7","series-title":"Pervasive Computing, International Conference, Pervasive, Helsinki, Finland, May, Vol. 6030","first-page":"138","article-title":"Recruitment framework for participatory sensing data collections","author":"Reddy","year":"2010"},{"issue":"6","key":"10.1016\/j.knosys.2023.110330_b8","doi-asserted-by":"crossref","first-page":"N","DOI":"10.1109\/MCOM.2013.6525603","article-title":"Fostering participaction in smart cities: a geo-social crowdsensing platform","volume":"51","author":"Cardone","year":"2013","journal-title":"IEEE Commun. Mag."},{"issue":"9","key":"10.1016\/j.knosys.2023.110330_b9","doi-asserted-by":"crossref","first-page":"7698","DOI":"10.1109\/TVT.2015.2490679","article-title":"Quality-aware sensing coverage in budget-constrained mobile crowdsensing networks","volume":"65","author":"Zhang","year":"2016","journal-title":"IEEE Trans. Veh. Technol."},{"issue":"3","key":"10.1016\/j.knosys.2023.110330_b10","doi-asserted-by":"crossref","first-page":"392","DOI":"10.1109\/THMS.2016.2599489","article-title":"ActiveCrowd: A framework for optimized multi-task allocation in mobile crowdsensing systems","volume":"PP","author":"Guo","year":"2017","journal-title":"IEEE Trans. Hum.-Mach. Syst."},{"key":"10.1016\/j.knosys.2023.110330_b11","unstructured":"L. Kazemi, C. Shahabi, GeoCrowd: Enabling query answering with spatial crowdsourcing, in: Proceedings of the 20th International Conference on Advances in Geographic Information Systems."},{"key":"10.1016\/j.knosys.2023.110330_b12","series-title":"2017 IEEE 33rd International Conference on Data Engineering (ICDE)","first-page":"997","article-title":"Prediction-based task assignment in spatial crowdsourcing","author":"Cheng","year":"2017"},{"key":"10.1016\/j.knosys.2023.110330_b13","article-title":"Reliable diversity-based spatial crowdsourcing by moving workers","author":"Cheng","year":"2014","journal-title":"Proc. VLDB Endow."},{"key":"10.1016\/j.knosys.2023.110330_b14","series-title":"2019 IEEE 35th International Conference on Data Engineering (ICDE)","article-title":"Adaptive dynamic bipartite graph matching: A reinforcement learning approach","author":"Wang","year":"2019"},{"key":"10.1016\/j.knosys.2023.110330_b15","article-title":"Multi-skill aware task assignment in real-time spatial crowdsourcing","author":"Song","year":"2019","journal-title":"GeoInformatica"},{"key":"10.1016\/j.knosys.2023.110330_b16","doi-asserted-by":"crossref","first-page":"289","DOI":"10.1007\/s11280-019-00696-8","article-title":"Budget-aware online task assignment in spatial crowdsourcing","volume":"23","author":"Liu","year":"2020","journal-title":"World Wide Web"},{"key":"10.1016\/j.knosys.2023.110330_b17","article-title":"Evolutionary Fuzzy-based gravitational search algorithm for query optimization in crowdsourcing system to minimize cost and latency","author":"Bhaskar","year":"2020","journal-title":"Comput. Intell."},{"issue":"11","key":"10.1016\/j.knosys.2023.110330_b18","doi-asserted-by":"crossref","first-page":"507","DOI":"10.5626\/KTCP.2020.26.11.507","article-title":"Cost-effective multi-task crowdsourcing method for knowledge extraction","volume":"26","author":"Nam","year":"2020","journal-title":"KIISE Trans. Comput. Pract."},{"issue":"11","key":"10.1016\/j.knosys.2023.110330_b19","doi-asserted-by":"crossref","first-page":"2479","DOI":"10.14778\/3407790.3407839","article-title":"Fair task assignment in spatial crowdsourcing","volume":"13","author":"Chen","year":"2020","journal-title":"Proc. VLDB Endow."},{"key":"10.1016\/j.knosys.2023.110330_b20","doi-asserted-by":"crossref","DOI":"10.1016\/j.comnet.2020.107144","article-title":"A worker-selection incentive mechanism for optimizing platform-centric mobile crowdsourcing systems","volume":"171","author":"Wang","year":"2020","journal-title":"Comput. Netw."},{"issue":"4","key":"10.1016\/j.knosys.2023.110330_b21","doi-asserted-by":"crossref","first-page":"1033","DOI":"10.1109\/TCSS.2020.2995760","article-title":"Walrasian equilibrium-based multiobjective optimization for task allocation in mobile crowdsourcing","volume":"7","author":"Wang","year":"2020","journal-title":"IEEE Trans. Comput. Soc. Syst."},{"key":"10.1016\/j.knosys.2023.110330_b22","series-title":"Markov Decision Processes: Discrete Stochastic Dynamic Programming","author":"Puterman","year":"1994"},{"key":"10.1016\/j.knosys.2023.110330_b23","series-title":"Reinforcement Learning: An Introduction","author":"Sutton","year":"2018"},{"key":"10.1016\/j.knosys.2023.110330_b24","series-title":"Proximal policy optimization algorithms","author":"Schulman","year":"2017"},{"key":"10.1016\/j.knosys.2023.110330_b25","doi-asserted-by":"crossref","DOI":"10.1016\/j.jss.2020.110611","article-title":"General framework, opportunities and challenges for crowdsourcing techniques: A comprehensive survey","volume":"167","author":"Bhatti","year":"2020","journal-title":"J. Syst. Softw."},{"issue":"4","key":"10.1016\/j.knosys.2023.110330_b26","doi-asserted-by":"crossref","first-page":"100","DOI":"10.1109\/MNET.2018.1700331","article-title":"Task assignment in mobile crowdsensing: Present and future directions","volume":"32","author":"Gong","year":"2018","journal-title":"IEEE Netw."},{"key":"10.1016\/j.knosys.2023.110330_b27","doi-asserted-by":"crossref","DOI":"10.1145\/3292390.3292395","article-title":"Dynamic task assignment in spatial crowdsourcing","volume":"10","author":"Tong","year":"2018","journal-title":"Sigspatial Special"},{"key":"10.1016\/j.knosys.2023.110330_b28","series-title":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","first-page":"49","article-title":"Online mobile Micro-Task Allocation in spatial crowdsourcing","author":"Tong","year":"2016"},{"issue":"11","key":"10.1016\/j.knosys.2023.110330_b29","doi-asserted-by":"crossref","first-page":"1334","DOI":"10.14778\/3137628.3137643","article-title":"Flexible online task assignment in real-time spatial data","volume":"10","author":"Tong","year":"2017","journal-title":"Proc. Vldb Endow."},{"key":"10.1016\/j.knosys.2023.110330_b30","doi-asserted-by":"crossref","DOI":"10.1002\/int.22371","article-title":"A two tage privacy protection mechanism based on blockchain in mobile crowdsourcing","author":"Sun","year":"2021","journal-title":"Int. J. Intell. Syst."},{"issue":"9","key":"10.1016\/j.knosys.2023.110330_b31","doi-asserted-by":"crossref","first-page":"7928","DOI":"10.1109\/JIOT.2020.2990428","article-title":"Privacy protection based on stream cipher for spatiotemporal data in IoT","volume":"7","author":"Liu","year":"2020","journal-title":"IEEE Internet Things J."},{"issue":"2","key":"10.1016\/j.knosys.2023.110330_b32","doi-asserted-by":"crossref","first-page":"967","DOI":"10.1109\/TDSC.2019.2912886","article-title":"Mobile crowdsourcing task allocation with differential-and-distortion geo-obfuscation","volume":"18","author":"Wang","year":"2021","journal-title":"IEEE Trans. Dependable Secur. Comput."},{"key":"10.1016\/j.knosys.2023.110330_b33","series-title":"2018 IEEE 34th International Conference on Data Engineering (ICDE)","first-page":"833","article-title":"Privacy-preserving online task assignment in spatial crowdsourcing with untrusted server","author":"To","year":"2018"},{"key":"10.1016\/j.knosys.2023.110330_b34","first-page":"1","article-title":"Collective data-sanitization for preventing sensitive information inference attacks in social networks","author":"Cai","year":"2018","journal-title":"IEEE Trans. Dependable Secur. Comput."},{"key":"10.1016\/j.knosys.2023.110330_b35","first-page":"1","article-title":"A private and efficient mechanism for data uploading in smart cyber-physical systems","author":"Cai","year":"2018","journal-title":"IEEE Trans. Netw. Sci. Eng."},{"key":"10.1016\/j.knosys.2023.110330_b36","first-page":"1","article-title":"Blockchain and deep reinforcement learning empowered spatial crowdsourcing in software-defined internet of vehicles","author":"Lin","year":"2020","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"key":"10.1016\/j.knosys.2023.110330_b37","doi-asserted-by":"crossref","first-page":"102","DOI":"10.1016\/j.comnet.2019.06.010","article-title":"Reinforcement learning-based cell selection in sparse mobile crowdsensing","volume":"161","author":"Liu","year":"2019","journal-title":"Comput. Netw."},{"key":"10.1016\/j.knosys.2023.110330_b38","series-title":"2020 IEEE Wireless Communications and Networking Conference, WCNC 2020, Seoul, Korea (South), May 25-28, 2020","first-page":"1","article-title":"Task allocation for mobile crowdsensing with deep reinforcement learning","author":"Tao","year":"2020"},{"key":"10.1016\/j.knosys.2023.110330_b39","series-title":"IEEE International Conference on Pervasive Computing and Communications (PerCom 2020)","article-title":"Participants selection for from-scratch mobile crowdsensing via reinforcement learning","author":"Hu","year":"2020"},{"issue":"1","key":"10.1016\/j.knosys.2023.110330_b40","doi-asserted-by":"crossref","first-page":"130","DOI":"10.1109\/TMC.2019.2938509","article-title":"Distributed and energy-efficient mobile crowdsensing with charging stations by deep reinforcement learning","volume":"20","author":"Liu","year":"2021","journal-title":"IEEE Trans. Mob. Comput."},{"key":"10.1016\/j.knosys.2023.110330_b41","series-title":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","first-page":"25","article-title":"Curiosity-driven energy-efficient worker scheduling in vehicular crowdsourcing: A deep reinforcement learning approach","author":"Liu","year":"2020"},{"issue":"7","key":"10.1016\/j.knosys.2023.110330_b42","doi-asserted-by":"crossref","first-page":"6312","DOI":"10.1109\/JIOT.2019.2962545","article-title":"Energy-efficient mobile crowdsensing by unmanned vehicles: A sequential deep reinforcement learning approach","volume":"7","author":"Piao","year":"2020","journal-title":"IEEE Internet Things J."},{"key":"10.1016\/j.knosys.2023.110330_b43","series-title":"2017 IEEE 33rd International Conference on Data Engineering (ICDE)","first-page":"1009","article-title":"Trichromatic online matching in real-time spatial crowdsourcing","author":"Song","year":"2017"},{"key":"10.1016\/j.knosys.2023.110330_b44","unstructured":"\u201dGoogle Map Api\u201d, https:\/\/developers.google.com\/maps\/."},{"key":"10.1016\/j.knosys.2023.110330_b45","unstructured":"\u201dYelp\u201d, https:\/\/www.yelp.com\/dataset."},{"key":"10.1016\/j.knosys.2023.110330_b46","unstructured":"\u201dgMission\u201d, http:\/\/gmission.github.io\/."},{"issue":"5","key":"10.1016\/j.knosys.2023.110330_b47","first-page":"2295","article-title":"Two-sided online micro-task assignment in spatial crowdsourcing","volume":"33","author":"Tong","year":"2021","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.knosys.2023.110330_b48","doi-asserted-by":"crossref","DOI":"10.1007\/s10489-022-04151-6","article-title":"A task allocation algorithm based on reinforcement learning in spatio-temporal crowdsourcing","author":"Zhao","year":"2022","journal-title":"Appl. Intell."}],"container-title":["Knowledge-Based Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0950705123000801?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0950705123000801?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,3,16]],"date-time":"2023-03-16T18:27:09Z","timestamp":1678991229000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0950705123000801"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,3]]},"references-count":48,"alternative-id":["S0950705123000801"],"URL":"https:\/\/doi.org\/10.1016\/j.knosys.2023.110330","relation":{},"ISSN":["0950-7051"],"issn-type":[{"value":"0950-7051","type":"print"}],"subject":[],"published":{"date-parts":[[2023,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"PPO-TA: Adaptive task allocation via Proximal Policy Optimization for spatio-temporal crowdsourcing","name":"articletitle","label":"Article Title"},{"value":"Knowledge-Based Systems","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.knosys.2023.110330","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"110330"}}