{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,9]],"date-time":"2024-09-09T02:37:39Z","timestamp":1725849459357},"reference-count":52,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,12,1]],"date-time":"2022-12-01T00:00:00Z","timestamp":1669852800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,12,1]],"date-time":"2022-12-01T00:00:00Z","timestamp":1669852800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2022,12,1]],"date-time":"2022-12-01T00:00:00Z","timestamp":1669852800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,12,1]],"date-time":"2022-12-01T00:00:00Z","timestamp":1669852800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,12,1]],"date-time":"2022-12-01T00:00:00Z","timestamp":1669852800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,12,1]],"date-time":"2022-12-01T00:00:00Z","timestamp":1669852800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,12,1]],"date-time":"2022-12-01T00:00:00Z","timestamp":1669852800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["62172309"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Knowledge-Based Systems"],"published-print":{"date-parts":[[2022,12]]},"DOI":"10.1016\/j.knosys.2022.109885","type":"journal-article","created":{"date-parts":[[2022,9,16]],"date-time":"2022-09-16T16:10:44Z","timestamp":1663344644000},"page":"109885","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":5,"special_numbering":"C","title":["Effective fuzzy joint mutual information feature selection based on uncertainty region for classification problem"],"prefix":"10.1016","volume":"257","author":[{"given":"Omar A.M.","family":"Salem","sequence":"first","affiliation":[]},{"given":"Feng","family":"Liu","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4122-3767","authenticated-orcid":false,"given":"Yi-Ping Phoebe","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Ahmed","family":"Hamed","sequence":"additional","affiliation":[]},{"given":"Xi","family":"Chen","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.knosys.2022.109885_b1","doi-asserted-by":"crossref","first-page":"32","DOI":"10.1016\/j.neucom.2013.05.059","article-title":"A method for resampling imbalanced datasets in binary classification tasks for real-world problems","volume":"135","author":"Cateni","year":"2014","journal-title":"Neurocomputing"},{"key":"10.1016\/j.knosys.2022.109885_b2","doi-asserted-by":"crossref","first-page":"388","DOI":"10.1016\/j.infsof.2014.07.005","article-title":"Software defect prediction using ensemble learning on selected features","volume":"58","author":"Laradji","year":"2015","journal-title":"Inf. Softw. Technol."},{"issue":"3","key":"10.1016\/j.knosys.2022.109885_b3","doi-asserted-by":"crossref","first-page":"528","DOI":"10.1016\/j.ejor.2010.02.032","article-title":"A discrete particle swarm optimization method for feature selection in binary classification problems","volume":"206","author":"Unler","year":"2010","journal-title":"European J. Oper. Res."},{"issue":"3","key":"10.1016\/j.knosys.2022.109885_b4","doi-asserted-by":"crossref","first-page":"159","DOI":"10.1007\/s10462-007-9052-3","article-title":"Machine learning: a review of classification and combining techniques","volume":"26","author":"Kotsiantis","year":"2006","journal-title":"Artif. Intell. Rev."},{"key":"10.1016\/j.knosys.2022.109885_b5","first-page":"1205","article-title":"Efficient feature selection via analysis of relevance and redundancy","volume":"5","author":"Yu","year":"2004","journal-title":"J. Mach. Learn. Res."},{"issue":"1","key":"10.1016\/j.knosys.2022.109885_b6","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1016\/S0004-3702(97)00043-X","article-title":"Wrappers for feature subset selection","volume":"97","author":"Kohavi","year":"1997","journal-title":"Artificial Intelligence"},{"issue":"5","key":"10.1016\/j.knosys.2022.109885_b7","doi-asserted-by":"crossref","first-page":"408","DOI":"10.1080\/08839514.2013.774211","article-title":"A novel embedded feature selection method: a comparative study in the application of text categorization","volume":"27","author":"Imani","year":"2013","journal-title":"Appl. Artif. Intell."},{"issue":"4","key":"10.1016\/j.knosys.2022.109885_b8","doi-asserted-by":"crossref","first-page":"1106","DOI":"10.1109\/TCBB.2012.33","article-title":"A survey on filter techniques for feature selection in gene expression microarray analysis","volume":"9","author":"Lazar","year":"2012","journal-title":"IEEE\/ACM Trans. Comput. Biol. Bioinform. (TCBB)"},{"issue":"19","key":"10.1016\/j.knosys.2022.109885_b9","doi-asserted-by":"crossref","first-page":"2507","DOI":"10.1093\/bioinformatics\/btm344","article-title":"A review of feature selection techniques in bioinformatics","volume":"23","author":"Saeys","year":"2007","journal-title":"Bioinformatics"},{"issue":"3","key":"10.1016\/j.knosys.2022.109885_b10","doi-asserted-by":"crossref","first-page":"379","DOI":"10.1002\/j.1538-7305.1948.tb01338.x","article-title":"A mathematical theory of communication","volume":"27","author":"Shannon","year":"1948","journal-title":"Bell Syst. Tech. J."},{"key":"10.1016\/j.knosys.2022.109885_b11","unstructured":"L. Sanchez, M.R. Su\u00e1rez, I. Couso, A fuzzy definition of Mutual Information with application to the design of Genetic Fuzzy Classifiers, in: Proc. Internat. Conf. on Machine Intelligence, ACIDCA-ICMI05, Tozeur, Tunisia, 2005, pp. 602\u2013609."},{"key":"10.1016\/j.knosys.2022.109885_b12","series-title":"Proceedings of the Workshop on Speech and Natural Language","first-page":"212","article-title":"Feature selection and feature extraction for text categorization","author":"Lewis","year":"1992"},{"issue":"4","key":"10.1016\/j.knosys.2022.109885_b13","doi-asserted-by":"crossref","first-page":"537","DOI":"10.1109\/72.298224","article-title":"Using mutual information for selecting features in supervised neural net learning","volume":"5","author":"Battiti","year":"1994","journal-title":"IEEE Trans. Neural Netw."},{"issue":"8","key":"10.1016\/j.knosys.2022.109885_b14","doi-asserted-by":"crossref","first-page":"1226","DOI":"10.1109\/TPAMI.2005.159","article-title":"Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy","volume":"27","author":"Peng","year":"2005","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.knosys.2022.109885_b15","doi-asserted-by":"crossref","first-page":"168","DOI":"10.1016\/j.neucom.2016.11.047","article-title":"Theoretical evaluation of feature selection methods based on mutual information","volume":"226","author":"Pascoal","year":"2017","journal-title":"Neurocomputing"},{"key":"10.1016\/j.knosys.2022.109885_b16","unstructured":"H. Yang, J. Moody, Feature selection based on joint mutual information, in: Proceedings of International ICSC Symposium on Advances in Intelligent Data Analysis, 1999, pp. 22\u201325."},{"issue":"Nov","key":"10.1016\/j.knosys.2022.109885_b17","first-page":"1531","article-title":"Fast binary feature selection with conditional mutual information","volume":"5","author":"Fleuret","year":"2004","journal-title":"J. Mach. Learn. Res."},{"issue":"22","key":"10.1016\/j.knosys.2022.109885_b18","doi-asserted-by":"crossref","first-page":"8520","DOI":"10.1016\/j.eswa.2015.07.007","article-title":"Feature selection using joint mutual information maximisation","volume":"42","author":"Bennasar","year":"2015","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.knosys.2022.109885_b19","doi-asserted-by":"crossref","first-page":"151525","DOI":"10.1109\/ACCESS.2019.2948095","article-title":"Input feature selection method based on feature set equivalence and mutual information gain maximization","volume":"7","author":"Wang","year":"2019","journal-title":"IEEE Access"},{"issue":"4","key":"10.1016\/j.knosys.2022.109885_b20","first-page":"619","article-title":"Fuzzy mutual information based min-redundancy and max-relevance heterogeneous feature selection","volume":"4","author":"Yu","year":"2011","journal-title":"Int. J. Comput. Intell. Syst."},{"key":"10.1016\/j.knosys.2022.109885_b21","doi-asserted-by":"crossref","first-page":"82","DOI":"10.1016\/j.fss.2018.07.006","article-title":"Uncertainty measures for general fuzzy relations","volume":"360","author":"Wang","year":"2019","journal-title":"Fuzzy Sets and Systems"},{"key":"10.1016\/j.knosys.2022.109885_b22","series-title":"Fuzzy Systems (FUZZ), 2013 IEEE International Conference on","first-page":"1","article-title":"A comparison of mutual and fuzzy-mutual information-based feature selection strategies","author":"Tsai","year":"2013"},{"key":"10.1016\/j.knosys.2022.109885_b23","doi-asserted-by":"crossref","DOI":"10.1016\/j.ijar.2021.01.003","article-title":"Feature selection and threshold method based on fuzzy joint mutual information","author":"Salem","year":"2021","journal-title":"Internat. J. Approx. Reason."},{"issue":"4","key":"10.1016\/j.knosys.2022.109885_b24","doi-asserted-by":"crossref","first-page":"4600","DOI":"10.1016\/j.eswa.2010.09.133","article-title":"Feature selection using fuzzy entropy measures with similarity classifier","volume":"38","author":"Luukka","year":"2011","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.knosys.2022.109885_b25","doi-asserted-by":"crossref","first-page":"216","DOI":"10.1016\/j.eswa.2018.06.002","article-title":"A combination of fuzzy similarity measures and fuzzy entropy measures for supervised feature selection","volume":"110","author":"Lohrmann","year":"2018","journal-title":"Expert Syst. Appl."},{"issue":"12","key":"10.1016\/j.knosys.2022.109885_b26","first-page":"2338","article-title":"Uncertainty measurement for a fuzzy relation information system","volume":"27","author":"Li","year":"2019","journal-title":"IEEE Trans. Fuzzy Syst."},{"key":"10.1016\/j.knosys.2022.109885_b27","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2021.116453","article-title":"Fuzzy joint mutual information feature selection based on ideal vector","volume":"193","author":"Salem","year":"2022","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.knosys.2022.109885_b28","doi-asserted-by":"crossref","DOI":"10.1016\/j.asoc.2022.108455","article-title":"Entropy measure for a fuzzy relation and its application in attribute reduction for heterogeneous data","volume":"118","author":"Qu","year":"2022","journal-title":"Appl. Soft Comput."},{"issue":"18","key":"10.1016\/j.knosys.2022.109885_b29","doi-asserted-by":"crossref","first-page":"3577","DOI":"10.1016\/j.ins.2008.05.024","article-title":"Neighborhood rough set based heterogeneous feature subset selection","volume":"178","author":"Hu","year":"2008","journal-title":"Inform. Sci."},{"key":"10.1016\/j.knosys.2022.109885_b30","doi-asserted-by":"crossref","first-page":"67","DOI":"10.1016\/j.neucom.2018.09.077","article-title":"Theoretical foundations of forward feature selection methods based on mutual information","volume":"325","author":"Macedo","year":"2019","journal-title":"Neurocomputing"},{"key":"10.1016\/j.knosys.2022.109885_b31","doi-asserted-by":"crossref","first-page":"68","DOI":"10.1016\/j.ins.2017.05.013","article-title":"Maximum relevance minimum common redundancy feature selection for nonlinear data","volume":"409","author":"Che","year":"2017","journal-title":"Inform. Sci."},{"key":"10.1016\/j.knosys.2022.109885_b32","article-title":"Introduction to interval type-2 fuzzy logic controllers-towards better uncertainty handling in real world applications","volume":"27","author":"Hagras","year":"2009","journal-title":"IEEE Syst. Man Cybern. eNewsletter"},{"issue":"12","key":"10.1016\/j.knosys.2022.109885_b33","doi-asserted-by":"crossref","first-page":"3509","DOI":"10.1016\/j.patcog.2007.03.017","article-title":"Hybrid attribute reduction based on a novel fuzzy-rough model and information granulation","volume":"40","author":"Hu","year":"2007","journal-title":"Pattern Recognit."},{"issue":"1","key":"10.1016\/j.knosys.2022.109885_b34","doi-asserted-by":"crossref","first-page":"175","DOI":"10.1007\/s00521-013-1368-0","article-title":"A review of feature selection methods based on mutual information","volume":"24","author":"Vergara","year":"2014","journal-title":"Neural Comput. Appl."},{"issue":"4","key":"10.1016\/j.knosys.2022.109885_b35","doi-asserted-by":"crossref","first-page":"828","DOI":"10.1109\/TKDE.2017.2650906","article-title":"Feature selection by maximizing independent classification information","volume":"29","author":"Wang","year":"2017","journal-title":"IEEE Trans. Knowl. Data Eng."},{"issue":"1","key":"10.1016\/j.knosys.2022.109885_b36","doi-asserted-by":"crossref","first-page":"58","DOI":"10.4018\/IJSI.2018010105","article-title":"Fuzzy mutual information feature selection based on representative samples","volume":"6","author":"Salem","year":"2018","journal-title":"Int. J. Softw. Innov. (IJSI)"},{"key":"10.1016\/j.knosys.2022.109885_b37","series-title":"2002 IEEE World Congress on Computational Intelligence. 2002 IEEE International Conference on Fuzzy Systems. FUZZ-IEEE\u201902. Proceedings (Cat. No. 02CH37291), vol. 1","first-page":"29","article-title":"Fuzzy-rough sets for descriptive dimensionality reduction","author":"Jensen","year":"2002"},{"issue":"2","key":"10.1016\/j.knosys.2022.109885_b38","doi-asserted-by":"crossref","first-page":"211","DOI":"10.1007\/s00355-008-0353-5","article-title":"What\u2019s so special about euclidean distance?","volume":"33","author":"D\u2019Agostino","year":"2009","journal-title":"Soc. Choice Welf."},{"key":"10.1016\/j.knosys.2022.109885_b39","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1016\/j.neucom.2012.04.039","article-title":"Feature selection for high-dimensional imbalanced data","volume":"105","author":"Yin","year":"2013","journal-title":"Neurocomputing"},{"key":"10.1016\/j.knosys.2022.109885_b40","series-title":"UCI Machine Learning Repository","author":"Dua","year":"2017"},{"issue":"6","key":"10.1016\/j.knosys.2022.109885_b41","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3136625","article-title":"Feature selection: A data perspective","volume":"50","author":"Li","year":"2017","journal-title":"ACM Comput. Surv."},{"issue":"9","key":"10.1016\/j.knosys.2022.109885_b42","doi-asserted-by":"crossref","first-page":"1208","DOI":"10.1109\/TSE.2013.11","article-title":"Data quality: Some comments on the nasa software defect datasets","volume":"39","author":"Shepperd","year":"2013","journal-title":"IEEE Trans. Softw. Eng."},{"issue":"4","key":"10.1016\/j.knosys.2022.109885_b43","doi-asserted-by":"crossref","first-page":"734","DOI":"10.1109\/TKDE.2012.35","article-title":"A survey of discretization techniques: Taxonomy and empirical analysis in supervised learning","volume":"25","author":"Garcia","year":"2012","journal-title":"IEEE Trans. Knowl. Data Eng."},{"issue":"1","key":"10.1016\/j.knosys.2022.109885_b44","doi-asserted-by":"crossref","first-page":"20","DOI":"10.1145\/1007730.1007735","article-title":"A study of the behavior of several methods for balancing machine learning training data","volume":"6","author":"Batista","year":"2004","journal-title":"ACM SIGKDD Explor. Newsl."},{"issue":"3","key":"10.1016\/j.knosys.2022.109885_b45","doi-asserted-by":"crossref","first-page":"257","DOI":"10.1023\/A:1007626913721","article-title":"Reduction techniques for instance-based learning algorithms","volume":"38","author":"Wilson","year":"2000","journal-title":"Mach. Learn."},{"key":"10.1016\/j.knosys.2022.109885_b46","series-title":"Comparing Bayesian network classifiers","author":"Cheng","year":"2013"},{"key":"10.1016\/j.knosys.2022.109885_b47","series-title":"An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods","author":"Cristianini","year":"2000"},{"issue":"2","key":"10.1016\/j.knosys.2022.109885_b48","doi-asserted-by":"crossref","first-page":"128","DOI":"10.1016\/S0019-9958(70)90081-1","article-title":"A generalized k-nearest neighbor rule","volume":"16","author":"Patrick","year":"1970","journal-title":"Inf. Control"},{"key":"10.1016\/j.knosys.2022.109885_b49","series-title":"Classification and regression trees","author":"Breiman","year":"1984"},{"key":"10.1016\/j.knosys.2022.109885_b50","series-title":"Ijcai, vol. 14, no. 2","first-page":"1137","article-title":"A study of cross-validation and bootstrap for accuracy estimation and model selection","author":"Kohavi","year":"1995"},{"issue":"12","key":"10.1016\/j.knosys.2022.109885_b51","doi-asserted-by":"crossref","first-page":"2222","DOI":"10.1016\/j.compbiomed.2013.10.016","article-title":"A threshold fuzzy entropy based feature selection for medical database classification","volume":"43","author":"Jaganathan","year":"2013","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.knosys.2022.109885_b52","doi-asserted-by":"crossref","first-page":"175","DOI":"10.1016\/j.ijar.2017.10.012","article-title":"Feature selection using rough set-based direct dependency calculation by avoiding the positive region","volume":"92","author":"Raza","year":"2018","journal-title":"Internat. J. Approx. Reason."}],"container-title":["Knowledge-Based Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0950705122009789?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0950705122009789?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,4,27]],"date-time":"2024-04-27T17:32:54Z","timestamp":1714239174000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0950705122009789"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,12]]},"references-count":52,"alternative-id":["S0950705122009789"],"URL":"https:\/\/doi.org\/10.1016\/j.knosys.2022.109885","relation":{},"ISSN":["0950-7051"],"issn-type":[{"value":"0950-7051","type":"print"}],"subject":[],"published":{"date-parts":[[2022,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Effective fuzzy joint mutual information feature selection based on uncertainty region for classification problem","name":"articletitle","label":"Article Title"},{"value":"Knowledge-Based Systems","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.knosys.2022.109885","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"109885"}}