{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,19]],"date-time":"2024-07-19T00:49:30Z","timestamp":1721350170835},"reference-count":38,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Knowledge-Based Systems"],"published-print":{"date-parts":[[2022,10]]},"DOI":"10.1016\/j.knosys.2022.109477","type":"journal-article","created":{"date-parts":[[2022,7,22]],"date-time":"2022-07-22T03:30:48Z","timestamp":1658460648000},"page":"109477","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":9,"special_numbering":"C","title":["Robust kernel-free support vector regression based on optimal margin distribution"],"prefix":"10.1016","volume":"253","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-8808-8948","authenticated-orcid":false,"given":"Jian","family":"Luo","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5087-3262","authenticated-orcid":false,"given":"Shu-Cherng","family":"Fang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0563-5841","authenticated-orcid":false,"given":"Zhibin","family":"Deng","sequence":"additional","affiliation":[]},{"given":"Ye","family":"Tian","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.knosys.2022.109477_b1","doi-asserted-by":"crossref","first-page":"988","DOI":"10.1109\/72.788640","article-title":"An overview of statistical learning theory","volume":"10","author":"Vapnik","year":"1999","journal-title":"IEEE Trans. Neural Netw."},{"key":"10.1016\/j.knosys.2022.109477_b2","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1007\/BF00994018","article-title":"Support-vector networks","volume":"20","author":"Cortes","year":"1995","journal-title":"Mach. Learn."},{"key":"10.1016\/j.knosys.2022.109477_b3","first-page":"1485","article-title":"Robustness and regularization of support vector machines","volume":"10","author":"Xu","year":"2009","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.knosys.2022.109477_b4","doi-asserted-by":"crossref","first-page":"628","DOI":"10.1287\/opre.2015.1374","article-title":"Oracle-based robust optimization via online learning","volume":"63","author":"Ben-Tal","year":"2015","journal-title":"Oper. Res."},{"key":"10.1016\/j.knosys.2022.109477_b5","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1007\/s10479-015-2039-6","article-title":"Robust chance-constrained support vector machines with second-order moment information","volume":"263","author":"Wang","year":"2018","journal-title":"Ann. Oper. Res."},{"key":"10.1016\/j.knosys.2022.109477_b6","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2021.106801","article-title":"Valley-loss regular simplex support vector machine for robust multiclass classification","volume":"216","author":"Tang","year":"2021","journal-title":"Knowl. Based Syst."},{"key":"10.1016\/j.knosys.2022.109477_b7","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2020.106652","article-title":"Robust multiclass least squares support vector classifier with optimal error distribution","volume":"215","author":"Ma","year":"2021","journal-title":"Knowl. Based Syst."},{"key":"10.1016\/j.knosys.2022.109477_b8","first-page":"1283","article-title":"Second order cone programming approaches for handling missing and uncertain data","volume":"7","author":"Shivaswamy","year":"2006","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.knosys.2022.109477_b9","doi-asserted-by":"crossref","first-page":"237","DOI":"10.1080\/03081070601058760","article-title":"Support vector regression with noisy data: A second order cone programming approach","volume":"36","author":"Trafalis","year":"2007","journal-title":"Int. J. Gen. Syst."},{"key":"10.1016\/j.knosys.2022.109477_b10","doi-asserted-by":"crossref","first-page":"1690","DOI":"10.1109\/TNNLS.2012.2212456","article-title":"Robust support vector regression for uncertain input and output data","volume":"23","author":"Huang","year":"2012","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.knosys.2022.109477_b11","first-page":"43","article-title":"Support vector regression with random output variable and probabilistic constraints","volume":"14","author":"Abaszade","year":"2017","journal-title":"Iran. J. Fuzzy Syst."},{"key":"10.1016\/j.knosys.2022.109477_b12","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2019.104915","article-title":"Joint sample and feature selection via sparse primal and dual lssvm","volume":"185","author":"Shao","year":"2019","journal-title":"Knowl. Based Syst."},{"key":"10.1016\/j.knosys.2022.109477_b13","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2020.106469","article-title":"Minimum class variance multiple kernel learning","volume":"208","author":"Wang","year":"2020","journal-title":"Knowl. Based Syst."},{"key":"10.1016\/j.knosys.2022.109477_b14","doi-asserted-by":"crossref","unstructured":"L. Reyzin, R.E. Schapire, How boosting the margin can also boost classifier complexity, in: Proc. 23rd Int. Conf. Mach. Learn. 2006, pp. 753\u2013760.","DOI":"10.1145\/1143844.1143939"},{"key":"10.1016\/j.knosys.2022.109477_b15","doi-asserted-by":"crossref","first-page":"1493","DOI":"10.1162\/089976699300016106","article-title":"Prediction games and arcing algorithms","volume":"11","author":"Breiman","year":"1999","journal-title":"Neural Comput."},{"key":"10.1016\/j.knosys.2022.109477_b16","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.artint.2013.07.002","article-title":"On the doubt about margin explanation of boosting","volume":"203","author":"Gao","year":"2013","journal-title":"Artificial Intelligence"},{"key":"10.1016\/j.knosys.2022.109477_b17","doi-asserted-by":"crossref","first-page":"1143","DOI":"10.1109\/TKDE.2019.2897662","article-title":"Optimal margin distribution machine","volume":"32","author":"Zhang","year":"2020","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.knosys.2022.109477_b18","doi-asserted-by":"crossref","unstructured":"B.E. Boser, I.M. Guyon, V.N. Vapnik, A training algorithm for optimal margin classifiers, in: Proc. 5th Annu. Workshop Comput. Learn. Theory (COLT), 1992, pp. 144\u2013152.","DOI":"10.1145\/130385.130401"},{"key":"10.1016\/j.knosys.2022.109477_b19","doi-asserted-by":"crossref","first-page":"482","DOI":"10.1109\/TPAMI.2005.78","article-title":"Feature space interpretation of svms with indefinite kernels","volume":"27","author":"Haasdonk","year":"2005","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.knosys.2022.109477_b20","doi-asserted-by":"crossref","first-page":"6351","DOI":"10.1016\/j.apm.2015.01.044","article-title":"Semisupervised spherical separation","volume":"39","author":"Astorino","year":"2015","journal-title":"Appl. Math. Model."},{"key":"10.1016\/j.knosys.2022.109477_b21","doi-asserted-by":"crossref","DOI":"10.1142\/S0217595916500469","article-title":"Soft quadratic surface support vector machine for binary classification","volume":"33","author":"Luo","year":"2016","journal-title":"Asia Pac. J. Oper. Res."},{"key":"10.1016\/j.knosys.2022.109477_b22","doi-asserted-by":"crossref","first-page":"1008","DOI":"10.1016\/j.ejor.2019.08.010","article-title":"Unsupervised quadratic surface support vector machine with application to credit risk assessment","volume":"280","author":"Luo","year":"2020","journal-title":"European J. Oper. Res."},{"key":"10.1016\/j.knosys.2022.109477_b23","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2021.107123","article-title":"A novel kernel-free least squares twin support vector machine for fast and accurate multi-class classification","volume":"226","author":"Gao","year":"2021","journal-title":"Knowl. Based Syst."},{"key":"10.1016\/j.knosys.2022.109477_b24","doi-asserted-by":"crossref","first-page":"265","DOI":"10.3233\/IDA-205094","article-title":"Quadratic hyper-surface kernel-free least squares support vector regression","volume":"25","author":"Ye","year":"2021","journal-title":"Intell. Data Anal."},{"key":"10.1016\/j.knosys.2022.109477_b25","doi-asserted-by":"crossref","first-page":"177","DOI":"10.1016\/j.ins.2022.02.012","article-title":"\u03f5-Kernel-free soft quadratic surface support vector regression","volume":"594","author":"Ye","year":"2022","journal-title":"Inform. Sci."},{"key":"10.1016\/j.knosys.2022.109477_b26","first-page":"155","article-title":"Support vector regression machines","volume":"9","author":"Drucker","year":"1997","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.knosys.2022.109477_b27","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2021.107119","article-title":"Technical analysis strategy optimization using a machine learning approach in stock market indices","volume":"225","author":"Ayala","year":"2021","journal-title":"Knowl. Based Syst."},{"key":"10.1016\/j.knosys.2022.109477_b28","doi-asserted-by":"crossref","first-page":"89","DOI":"10.1016\/j.ijforecast.2017.08.004","article-title":"Benchmarking robustness of load forecasting models under data integrity attacks","volume":"34","author":"Luo","year":"2018","journal-title":"Int. J. Forecast."},{"key":"10.1016\/j.knosys.2022.109477_b29","article-title":"Hydro-power production capacity prediction based on machine learning regression techniques","volume":"222","author":"Condemia","year":"2021","journal-title":"Knowl. Based Syst."},{"key":"10.1016\/j.knosys.2022.109477_b30","first-page":"1471","article-title":"Training and testing low-degree polynomial data mappings via linear svm","volume":"11","author":"Chang","year":"2010","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.knosys.2022.109477_b31","doi-asserted-by":"crossref","unstructured":"Y. Goldberg, M. Elhadad, SplitSVM: fast, space-efficient, non-heuristic, polynomial kernel computation for NLP applications, in: Proc. ACL-08: HLT, Short Papers, 2008, pp. 237\u2013240.","DOI":"10.3115\/1557690.1557758"},{"key":"10.1016\/j.knosys.2022.109477_b32","doi-asserted-by":"crossref","unstructured":"M. Sellathurai, S. Haykin, The separability theory of hyperbolic tangent kernels and support vector machines for pattern classification, in: Proc. IEEE Int. Conf. Acou. Speech Sig. Proc. (ICASSP), 1999, pp. 1021\u20131024.","DOI":"10.1109\/ICASSP.1999.759878"},{"key":"10.1016\/j.knosys.2022.109477_b33","series-title":"CVX: Matlab software for disciplined convex programming, version 2.1","author":"Grant","year":"2014"},{"key":"10.1016\/j.knosys.2022.109477_b34","series-title":"UCI machine learning repository","author":"Bache","year":"2013"},{"key":"10.1016\/j.knosys.2022.109477_b35","series-title":"Pattern Classification","author":"Duda","year":"2001"},{"key":"10.1016\/j.knosys.2022.109477_b36","doi-asserted-by":"crossref","first-page":"383","DOI":"10.1038\/s41560-019-0356-8","article-title":"Data-driven prediction of battery cycle life before capacity degradation","volume":"4","author":"Severson","year":"2019","journal-title":"Nature Energy"},{"key":"10.1016\/j.knosys.2022.109477_b37","doi-asserted-by":"crossref","first-page":"115","DOI":"10.1007\/s10107-017-1172-1","article-title":"Data-driven distributionally robust optimization using the wasserstein metric: performance guarantees and tractable reformulations","volume":"171","author":"Esfahani","year":"2018","journal-title":"Math. Program."},{"key":"10.1016\/j.knosys.2022.109477_b38","doi-asserted-by":"crossref","first-page":"227","DOI":"10.1016\/j.knosys.2018.08.034","article-title":"Clustering by twin support vector machine and least square twin support vector classifier with uniform output coding","volume":"163","author":"Bai","year":"2019","journal-title":"Knowl. Based Syst."}],"container-title":["Knowledge-Based Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0950705122007407?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0950705122007407?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,4,27]],"date-time":"2024-04-27T17:22:46Z","timestamp":1714238566000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0950705122007407"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,10]]},"references-count":38,"alternative-id":["S0950705122007407"],"URL":"https:\/\/doi.org\/10.1016\/j.knosys.2022.109477","relation":{},"ISSN":["0950-7051"],"issn-type":[{"value":"0950-7051","type":"print"}],"subject":[],"published":{"date-parts":[[2022,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Robust kernel-free support vector regression based on optimal margin distribution","name":"articletitle","label":"Article Title"},{"value":"Knowledge-Based Systems","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.knosys.2022.109477","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"109477"}}