{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,2]],"date-time":"2024-08-02T04:31:30Z","timestamp":1722573090338},"reference-count":68,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,5,1]],"date-time":"2022-05-01T00:00:00Z","timestamp":1651363200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,5,1]],"date-time":"2022-05-01T00:00:00Z","timestamp":1651363200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,5,1]],"date-time":"2022-05-01T00:00:00Z","timestamp":1651363200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,5,1]],"date-time":"2022-05-01T00:00:00Z","timestamp":1651363200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,5,1]],"date-time":"2022-05-01T00:00:00Z","timestamp":1651363200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,5,1]],"date-time":"2022-05-01T00:00:00Z","timestamp":1651363200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/100012542","name":"Sichuan Province Science and Technology Support Program","doi-asserted-by":"publisher","award":["2019YJ0176 \/ 2019YJ0177 \/ 2019YFQ0005"],"id":[{"id":"10.13039\/100012542","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Knowledge-Based Systems"],"published-print":{"date-parts":[[2022,5]]},"DOI":"10.1016\/j.knosys.2022.108424","type":"journal-article","created":{"date-parts":[[2022,2,18]],"date-time":"2022-02-18T16:36:27Z","timestamp":1645202187000},"page":"108424","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":11,"special_numbering":"C","title":["Pixel-wise triplet learning for enhancing boundary discrimination in medical image segmentation"],"prefix":"10.1016","volume":"243","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-0561-6229","authenticated-orcid":false,"given":"Yang","family":"Wen","sequence":"first","affiliation":[]},{"given":"Leiting","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Yu","family":"Deng","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1349-9755","authenticated-orcid":false,"given":"Zhong","family":"Zhang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7700-7188","authenticated-orcid":false,"given":"Chuan","family":"Zhou","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.knosys.2022.108424_b1","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2020.101693","article-title":"Embracing imperfect datasets: A review of deep learning solutions for medical image segmentation","author":"Tajbakhsh","year":"2020","journal-title":"Med. Image Anal."},{"issue":"3","key":"10.1016\/j.knosys.2022.108424_b2","doi-asserted-by":"crossref","first-page":"288","DOI":"10.18178\/ijmlc.2019.9.3.800","article-title":"A review of image denoising and segmentation methods based on medical images","volume":"9","author":"Kollem","year":"2019","journal-title":"Int. J. Mach. Learn. Comput."},{"key":"10.1016\/j.knosys.2022.108424_b3","first-page":"1","article-title":"Deep semantic segmentation of natural and medical images: A review","author":"Taghanaki","year":"2020","journal-title":"Artif. Intell. Rev."},{"key":"10.1016\/j.knosys.2022.108424_b4","article-title":"A review: Deep learning for medical image segmentation using multi-modality fusion","volume":"3","author":"Zhou","year":"2019","journal-title":"Array"},{"key":"10.1016\/j.knosys.2022.108424_b5","series-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"234","article-title":"U-net: Convolutional networks for biomedical image segmentation","author":"Ronneberger","year":"2015"},{"key":"10.1016\/j.knosys.2022.108424_b6","series-title":"2016 International Conference on 3D Vision","first-page":"565","article-title":"V-net: Fully convolutional neural networks for volumetric medical image segmentation","author":"Milletari","year":"2016"},{"issue":"12","key":"10.1016\/j.knosys.2022.108424_b7","doi-asserted-by":"crossref","first-page":"2663","DOI":"10.1109\/TMI.2018.2845918","article-title":"H-DenseUNet: Hybrid densely connected UNet for liver and tumor segmentation from CT volumes","volume":"37","author":"Li","year":"2018","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"7","key":"10.1016\/j.knosys.2022.108424_b8","doi-asserted-by":"crossref","first-page":"1597","DOI":"10.1109\/TMI.2018.2791488","article-title":"Joint optic disc and cup segmentation based on multi-label deep network and polar transformation","volume":"37","author":"Fu","year":"2018","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.knosys.2022.108424_b9","doi-asserted-by":"crossref","DOI":"10.1109\/TMI.2019.2903562","article-title":"CE-Net: Context encoder network for 2D medical image segmentation","author":"Gu","year":"2019","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.knosys.2022.108424_b10","series-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"102","article-title":"Boundary and entropy-driven adversarial learning for fundus image segmentation","author":"Wang","year":"2019"},{"key":"10.1016\/j.knosys.2022.108424_b11","series-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"442","article-title":"Et-net: A generic edge-attention guidance network for medical image segmentation","author":"Zhang","year":"2019"},{"key":"10.1016\/j.knosys.2022.108424_b12","doi-asserted-by":"crossref","unstructured":"H. Chen, X. Qi, L. Yu, P.-A. Heng, DCAN: deep contour-aware networks for accurate gland segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 2487\u20132496.","DOI":"10.1109\/CVPR.2016.273"},{"issue":"11","key":"10.1016\/j.knosys.2022.108424_b13","doi-asserted-by":"crossref","first-page":"2366","DOI":"10.1109\/TMI.2015.2433900","article-title":"A stochastic polygons model for glandular structures in colon histology images","volume":"34","author":"Sirinukunwattana","year":"2015","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.knosys.2022.108424_b14","series-title":"2011 24th International Symposium on Computer-Based Medical Systems","first-page":"1","article-title":"Rim-ONE: An open retinal image database for optic nerve evaluation","author":"Fumero","year":"2011"},{"key":"10.1016\/j.knosys.2022.108424_b15","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.media.2017.06.015","article-title":"Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge","volume":"42","author":"Setio","year":"2017","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.knosys.2022.108424_b16","doi-asserted-by":"crossref","unstructured":"B. De\u00a0Brabandere, D. Neven, L. Van\u00a0Gool, Semantic instance segmentation for autonomous driving, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2017, pp. 7\u20139.","DOI":"10.1109\/CVPRW.2017.66"},{"key":"10.1016\/j.knosys.2022.108424_b17","doi-asserted-by":"crossref","unstructured":"Y. Chen, J. Pont-Tuset, A. Montes, L. Van\u00a0Gool, Blazingly fast video object segmentation with pixel-wise metric learning, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 1189\u20131198.","DOI":"10.1109\/CVPR.2018.00130"},{"key":"10.1016\/j.knosys.2022.108424_b18","series-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"174","article-title":"Multi-scale microaneurysms segmentation using embedding triplet loss","author":"Sarhan","year":"2019"},{"key":"10.1016\/j.knosys.2022.108424_b19","series-title":"2019 Chinese Control and Decision Conference","first-page":"1633","article-title":"An enhanced neural network based on deep metric learning for skin lesion segmentation","author":"Liu","year":"2019"},{"key":"10.1016\/j.knosys.2022.108424_b20","doi-asserted-by":"crossref","first-page":"256","DOI":"10.1016\/j.patrec.2018.08.002","article-title":"Foreground segmentation using a triplet convolutional neural network for multiscale feature encoding","volume":"112","author":"Ang","year":"2018","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.knosys.2022.108424_b21","doi-asserted-by":"crossref","unstructured":"Z. Xiaohang, L. Ziwei, L. Ping, T. Xiaoou, C.L. Chen, Mix-and-Match Tuning for Self-Supervised Semantic Segmentation, in: AAAI Conference on Artificial Intelligence, AAAI, 2018.","DOI":"10.1609\/aaai.v32i1.12331"},{"key":"10.1016\/j.knosys.2022.108424_b22","doi-asserted-by":"crossref","unstructured":"W. Ge, S. Yang, Y. Yu, Multi-evidence filtering and fusion for multi-label classification, object detection and semantic segmentation based on weakly supervised learning, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 1277\u20131286.","DOI":"10.1109\/CVPR.2018.00139"},{"issue":"11","key":"10.1016\/j.knosys.2022.108424_b23","doi-asserted-by":"crossref","first-page":"2485","DOI":"10.1109\/TMI.2019.2899910","article-title":"Patch-based output space adversarial learning for joint optic disc and cup segmentation","volume":"38","author":"Wang","year":"2019","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.knosys.2022.108424_b24","doi-asserted-by":"crossref","unstructured":"Y. Li, X. Chen, Z. Zhu, L. Xie, G. Huang, D. Du, X. Wang, Attention-guided unified network for panoptic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 7026\u20137035.","DOI":"10.1109\/CVPR.2019.00719"},{"key":"10.1016\/j.knosys.2022.108424_b25","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2020.107756","article-title":"Crossover-Net: Leveraging vertical-horizontal crossover relation for robust medical image segmentation","volume":"113","author":"Yu","year":"2021","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.knosys.2022.108424_b26","doi-asserted-by":"crossref","unstructured":"S. Mehta, M. Rastegari, L. Shapiro, H. Hajishirzi, Espnetv2: A light-weight, power efficient, and general purpose convolutional neural network, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 9190\u20139200.","DOI":"10.1109\/CVPR.2019.00941"},{"key":"10.1016\/j.knosys.2022.108424_b27","doi-asserted-by":"crossref","unstructured":"C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, N. Sang, Bisenet: Bilateral segmentation network for real-time semantic segmentation, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 325\u2013341.","DOI":"10.1007\/978-3-030-01261-8_20"},{"issue":"9","key":"10.1016\/j.knosys.2022.108424_b28","doi-asserted-by":"crossref","first-page":"1066","DOI":"10.3390\/sym11091066","article-title":"Deep metric learning: A survey","volume":"11","author":"Kaya","year":"2019","journal-title":"Symmetry"},{"key":"10.1016\/j.knosys.2022.108424_b29","doi-asserted-by":"crossref","unstructured":"J. Wang, Y. Song, T. Leung, C. Rosenberg, J. Wang, J. Philbin, B. Chen, Y. Wu, Learning fine-grained image similarity with deep ranking, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 1386\u20131393.","DOI":"10.1109\/CVPR.2014.180"},{"key":"10.1016\/j.knosys.2022.108424_b30","series-title":"Deep Face Recognition","author":"Parkhi","year":"2015"},{"key":"10.1016\/j.knosys.2022.108424_b31","doi-asserted-by":"crossref","unstructured":"F. Schroff, D. Kalenichenko, J. Philbin, Facenet: A unified embedding for face recognition and clustering, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 815\u2013823.","DOI":"10.1109\/CVPR.2015.7298682"},{"key":"10.1016\/j.knosys.2022.108424_b32","doi-asserted-by":"crossref","unstructured":"D. Cheng, Y. Gong, S. Zhou, J. Wang, N. Zheng, Person re-identification by multi-channel parts-based cnn with improved triplet loss function, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 1335\u20131344.","DOI":"10.1109\/CVPR.2016.149"},{"key":"10.1016\/j.knosys.2022.108424_b33","doi-asserted-by":"crossref","unstructured":"Y. Chen, J. Pont-Tuset, A. Montes, L. Van\u00a0Gool, Blazingly fast video object segmentation with pixel-wise metric learning, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 1189\u20131198.","DOI":"10.1109\/CVPR.2018.00130"},{"key":"10.1016\/j.knosys.2022.108424_b34","article-title":"Dense unsupervised learning for video segmentation","volume":"34","author":"Araslanov","year":"2021","journal-title":"Adv. Neural Inf. Process. Syst."},{"issue":"2","key":"10.1016\/j.knosys.2022.108424_b35","doi-asserted-by":"crossref","DOI":"10.1088\/1361-6560\/aaf5da","article-title":"Nasopharyngeal carcinoma segmentation based on enhanced convolutional neural networks using multi-modal metric learning","volume":"64","author":"Ma","year":"2019","journal-title":"Phys. Med. Biol."},{"key":"10.1016\/j.knosys.2022.108424_b36","series-title":"Exploring cross-image pixel contrast for semantic segmentation","author":"Wang","year":"2021"},{"key":"10.1016\/j.knosys.2022.108424_b37","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2021.102039","article-title":"MetricUNet: Synergistic Image-and voxel-level learning for precise prostate segmentation via online sampling","volume":"71","author":"He","year":"2021","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.knosys.2022.108424_b38","doi-asserted-by":"crossref","unstructured":"L. Wang, D. Li, Y. Zhu, L. Tian, Y. Shan, Dual Super-Resolution Learning for Semantic Segmentation, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 3774\u20133783.","DOI":"10.1109\/CVPR42600.2020.00383"},{"key":"10.1016\/j.knosys.2022.108424_b39","doi-asserted-by":"crossref","unstructured":"K. He, G. Gkioxari, P. Doll\u00e1r, R. Girshick, Mask r-cnn, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 2961\u20132969.","DOI":"10.1109\/ICCV.2017.322"},{"key":"10.1016\/j.knosys.2022.108424_b40","doi-asserted-by":"crossref","unstructured":"S. Dai, L. Chen, T. Lei, C. Zhou, Y. Wen, Automatic Detection Of Pathological Myopia And High Myopia On Fundus Images, in: 2020 IEEE International Conference on Multimedia and Expo, ICME, 2020, pp. 1\u20136.","DOI":"10.1109\/ICME46284.2020.9102787"},{"key":"10.1016\/j.knosys.2022.108424_b41","unstructured":"C.-Y. Wu, R. Manmatha, A.J. Smola, P. Krahenbuhl, Sampling matters in deep embedding learning, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 2840\u20132848."},{"key":"10.1016\/j.knosys.2022.108424_b42","doi-asserted-by":"crossref","unstructured":"B. Yu, T. Liu, M. Gong, C. Ding, D. Tao, Correcting the triplet selection bias for triplet loss, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 71\u201387.","DOI":"10.1007\/978-3-030-01231-1_5"},{"issue":"2","key":"10.1016\/j.knosys.2022.108424_b43","doi-asserted-by":"crossref","first-page":"577","DOI":"10.1109\/TMI.2013.2290491","article-title":"Lung segmentation in chest radiographs using anatomical atlases with nonrigid registration","volume":"33","author":"Candemir","year":"2013","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"2","key":"10.1016\/j.knosys.2022.108424_b44","doi-asserted-by":"crossref","first-page":"233","DOI":"10.1109\/TMI.2013.2284099","article-title":"Automatic tuberculosis screening using chest radiographs","volume":"33","author":"Jaeger","year":"2013","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.knosys.2022.108424_b45","series-title":"CHAOS - Combined (CT-MR) healthy abdominal organ segmentation challenge data","author":"Kavur","year":"2019"},{"key":"10.1016\/j.knosys.2022.108424_b46","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2020.101950","article-title":"CHAOS Challenge-combined (CT-MR) healthy abdominal organ segmentation","volume":"69","author":"Kavur","year":"2021","journal-title":"Med. Image Anal."},{"issue":"3","key":"10.1016\/j.knosys.2022.108424_b47","doi-asserted-by":"crossref","first-page":"335","DOI":"10.1016\/j.media.2007.12.003","article-title":"Efficient and generalizable statistical models of shape and appearance for analysis of cardiac MRI","volume":"12","author":"Andreopoulos","year":"2008","journal-title":"Med. Image Anal."},{"issue":"2","key":"10.1016\/j.knosys.2022.108424_b48","doi-asserted-by":"crossref","first-page":"448","DOI":"10.1109\/TMI.2018.2865709","article-title":"Segmentation of nuclei in histopathology images by deep regression of the distance map","volume":"38","author":"Naylor","year":"2018","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.knosys.2022.108424_b49","doi-asserted-by":"crossref","unstructured":"J. Sivaswamy, S.R. Krishnadas, G.D. Joshi, M. Jain, A.U.S. Tabish, Drishti-GS: Retinal image dataset for optic nerve head segmentation, in: IEEE International Symposium on Biomedical Imaging, 2014.","DOI":"10.1109\/ISBI.2014.6867807"},{"issue":"5","key":"10.1016\/j.knosys.2022.108424_b50","doi-asserted-by":"crossref","first-page":"530","DOI":"10.1109\/TPAMI.2004.1273918","article-title":"Learning to detect natural image boundaries using local brightness, color, and texture cues","volume":"26","author":"Martin","year":"2004","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.knosys.2022.108424_b51","doi-asserted-by":"crossref","unstructured":"F. Perazzi, J. Pont-Tuset, B. McWilliams, L. Van\u00a0Gool, M. Gross, A. Sorkine-Hornung, A benchmark dataset and evaluation methodology for video object segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 724\u2013732.","DOI":"10.1109\/CVPR.2016.85"},{"key":"10.1016\/j.knosys.2022.108424_b52","doi-asserted-by":"crossref","unstructured":"L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, H. Adam, Encoder-decoder with atrous separable convolution for semantic image segmentation, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 801\u2013818.","DOI":"10.1007\/978-3-030-01234-2_49"},{"issue":"2","key":"10.1016\/j.knosys.2022.108424_b53","doi-asserted-by":"crossref","first-page":"203","DOI":"10.1038\/s41592-020-01008-z","article-title":"nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation","volume":"18","author":"Isensee","year":"2021","journal-title":"Nature Methods"},{"key":"10.1016\/j.knosys.2022.108424_b54","doi-asserted-by":"crossref","unstructured":"H. Zhao, J. Shi, X. Qi, X. Wang, J. Jia, Pyramid scene parsing network, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2881\u20132890.","DOI":"10.1109\/CVPR.2017.660"},{"issue":"7","key":"10.1016\/j.knosys.2022.108424_b55","doi-asserted-by":"crossref","first-page":"1597","DOI":"10.1109\/TMI.2018.2791488","article-title":"Joint optic disc and cup segmentation based on multi-label deep network and polar transformation","volume":"37","author":"Fu","year":"2018","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.knosys.2022.108424_b56","unstructured":"D.P. Kingma, J. Ba, Adam, A method for stochastic optimization, in: Proceedings of the 3rd International Conference on Learning Representations, ICLR, Vol. 1412, 2015."},{"issue":"1","key":"10.1016\/j.knosys.2022.108424_b57","doi-asserted-by":"crossref","first-page":"35","DOI":"10.1023\/B:VLSI.0000028532.53893.82","article-title":"Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement","volume":"38","author":"Reza","year":"2004","journal-title":"J. VLSI Signal Process. Syst. Signal Image Video Technol."},{"key":"10.1016\/j.knosys.2022.108424_b58","series-title":"imgaug","author":"Jung","year":"2020"},{"key":"10.1016\/j.knosys.2022.108424_b59","series-title":"International Conference on Machine Learning","first-page":"1597","article-title":"A simple framework for contrastive learning of visual representations","author":"Chen","year":"2020"},{"key":"10.1016\/j.knosys.2022.108424_b60","series-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"481","article-title":"Semi-supervised contrastive learning for label-efficient medical image segmentation","author":"Hu","year":"2021"},{"key":"10.1016\/j.knosys.2022.108424_b61","series-title":"Annual Conference on Medical Image Understanding and Analysis","first-page":"698","article-title":"Mimonet: Gland segmentation using multi-input-multi-output convolutional neural network","author":"Raza","year":"2017"},{"key":"10.1016\/j.knosys.2022.108424_b62","doi-asserted-by":"crossref","first-page":"199","DOI":"10.1016\/j.media.2018.12.001","article-title":"Mild-Net: Minimal information loss dilated network for gland instance segmentation in colon histology images","volume":"52","author":"Graham","year":"2019","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.knosys.2022.108424_b63","doi-asserted-by":"crossref","first-page":"150","DOI":"10.1016\/j.neucom.2019.10.097","article-title":"Multi-scale fully convolutional network for gland segmentation using three-class classification","volume":"380","author":"Ding","year":"2020","journal-title":"Neurocomputing"},{"key":"10.1016\/j.knosys.2022.108424_b64","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2020.101876","article-title":"Pairwise learning for medical image segmentation","volume":"67","author":"Wang","year":"2021","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.knosys.2022.108424_b65","doi-asserted-by":"crossref","DOI":"10.1016\/j.artmed.2021.102109","article-title":"Abdominal multi-organ segmentation with cascaded convolutional and adversarial deep networks","volume":"117","author":"Conze","year":"2021","journal-title":"Artif. Intell. Med."},{"key":"10.1016\/j.knosys.2022.108424_b66","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1016\/j.cag.2020.05.003","article-title":"ANU-Net: ATtention-based Nested U-Net to exploit full resolution features for medical image segmentation","volume":"90","author":"Li","year":"2020","journal-title":"Comput. Graph."},{"key":"10.1016\/j.knosys.2022.108424_b67","doi-asserted-by":"crossref","unstructured":"X. Zhao, R. Vemulapalli, P.A. Mansfield, B. Gong, B. Green, L. Shapira, Y. Wu, Contrastive Learning for Label Efficient Semantic Segmentation, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, 2021, pp. 10623\u201310633.","DOI":"10.1109\/ICCV48922.2021.01045"},{"issue":"4","key":"10.1016\/j.knosys.2022.108424_b68","doi-asserted-by":"crossref","first-page":"1218","DOI":"10.1109\/JBHI.2017.2731873","article-title":"Automated breast ultrasound lesions detection using convolutional neural networks","volume":"22","author":"Yap","year":"2017","journal-title":"IEEE J. Biomed. Health Inf."}],"container-title":["Knowledge-Based Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0950705122001708?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0950705122001708?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,3,11]],"date-time":"2023-03-11T16:42:30Z","timestamp":1678552950000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0950705122001708"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,5]]},"references-count":68,"alternative-id":["S0950705122001708"],"URL":"https:\/\/doi.org\/10.1016\/j.knosys.2022.108424","relation":{},"ISSN":["0950-7051"],"issn-type":[{"value":"0950-7051","type":"print"}],"subject":[],"published":{"date-parts":[[2022,5]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Pixel-wise triplet learning for enhancing boundary discrimination in medical image segmentation","name":"articletitle","label":"Article Title"},{"value":"Knowledge-Based Systems","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.knosys.2022.108424","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"108424"}}