{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,15]],"date-time":"2024-09-15T17:29:55Z","timestamp":1726421395142},"reference-count":36,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Knowledge-Based Systems"],"published-print":{"date-parts":[[2022,1]]},"DOI":"10.1016\/j.knosys.2021.107737","type":"journal-article","created":{"date-parts":[[2021,11,20]],"date-time":"2021-11-20T23:55:42Z","timestamp":1637452542000},"page":"107737","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":2,"special_numbering":"C","title":["Revealing the structure of prediction models through feature interaction detection"],"prefix":"10.1016","volume":"236","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-5315-8712","authenticated-orcid":false,"given":"Xiaohang","family":"Zhang","sequence":"first","affiliation":[]},{"given":"Hanying","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Ji","family":"Zhu","sequence":"additional","affiliation":[]},{"given":"Zhengren","family":"Li","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.knosys.2021.107737_b1","doi-asserted-by":"crossref","unstructured":"R. Caruana, Y. Lou, J. Gehrke, P. Koch, M. Sturm, N. Elhadad, Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission, in: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2015, pp. 1721\u20131730.","DOI":"10.1145\/2783258.2788613"},{"issue":"4","key":"10.1016\/j.knosys.2021.107737_b2","doi-asserted-by":"crossref","DOI":"10.1002\/widm.1312","article-title":"Causability and explainability of artificial intelligence in medicine","volume":"9","author":"Holzinger","year":"2019","journal-title":"Wiley Interdiscip. Rev. Data Min. Knowl. Discov."},{"key":"10.1016\/j.knosys.2021.107737_b3","first-page":"1","article-title":"A survey on explainable artificial intelligence (XAI): towards medical XAI","author":"Tjoa","year":"2020","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"2","key":"10.1016\/j.knosys.2021.107737_b4","doi-asserted-by":"crossref","first-page":"129","DOI":"10.1002\/asmb.658","article-title":"Bankruptcy prediction by generalized additive models","volume":"23","author":"Berg","year":"2007","journal-title":"Appl. Stoch. Models Bus. Ind."},{"key":"10.1016\/j.knosys.2021.107737_b5","doi-asserted-by":"crossref","unstructured":"M. Doron, I. Segev, D. Shahaf, Discovering Unexpected Local Nonlinear Interactions in Scientific Black-box Models, in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2019, pp. 425\u2013435.","DOI":"10.1145\/3292500.3330886"},{"issue":"5","key":"10.1016\/j.knosys.2021.107737_b6","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3236009","article-title":"A survey of methods for explaining black box models","volume":"51","author":"Guidotti","year":"2018","journal-title":"ACM Comput. Surv."},{"key":"10.1016\/j.knosys.2021.107737_b7","doi-asserted-by":"crossref","unstructured":"G. Hooker, Discovering additive structure in black box functions, in: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2004, pp. 575\u2013580.","DOI":"10.1145\/1014052.1014122"},{"key":"10.1016\/j.knosys.2021.107737_b8","doi-asserted-by":"crossref","first-page":"105","DOI":"10.1016\/j.techfore.2015.12.014","article-title":"Applied artificial intelligence and trust\u2014The case of autonomous vehicles and medical assistance devices","volume":"105","author":"Hengstler","year":"2016","journal-title":"Technol. Forecast. Soc. Change"},{"issue":"3","key":"10.1016\/j.knosys.2021.107737_b9","doi-asserted-by":"crossref","first-page":"473","DOI":"10.2307\/259290","article-title":"Initial trust formation in new organizational relationships","volume":"23","author":"McKnight","year":"1998","journal-title":"Acad. Manag. Rev."},{"issue":"2","key":"10.1016\/j.knosys.2021.107737_b10","first-page":"47","article-title":"Building trust in artificial intelligence, machine learning, and robotics","volume":"31","author":"Siau","year":"2018","journal-title":"Cut. Bus. Technol. J."},{"key":"10.1016\/j.knosys.2021.107737_b11","doi-asserted-by":"crossref","first-page":"82","DOI":"10.1016\/j.inffus.2019.12.012","article-title":"Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI","volume":"58","author":"Arrieta","year":"2020","journal-title":"Inf. Fusion"},{"issue":"1","key":"10.1016\/j.knosys.2021.107737_b12","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1561\/1500000066","article-title":"Explainable recommendation: A survey and new perspectives","volume":"14","author":"Zhang","year":"2020","journal-title":"Found. Trends Inf. Retr."},{"issue":"7","key":"10.1016\/j.knosys.2021.107737_b13","doi-asserted-by":"crossref","first-page":"858","DOI":"10.3390\/sym11070858","article-title":"Feature selection with conditional mutual information considering feature interaction","volume":"11","author":"Liang","year":"2019","journal-title":"Symmetry"},{"key":"10.1016\/j.knosys.2021.107737_b14","doi-asserted-by":"crossref","unstructured":"D. Sorokina, R. Caruana, M. Riedewald, D. Fink, Detecting statistical interactions with additive groves of trees, in: Proceedings of the 25th International Conference on Machine Learning, 2008, pp. 1000\u20131007.","DOI":"10.1145\/1390156.1390282"},{"issue":"7","key":"10.1016\/j.knosys.2021.107737_b15","first-page":"876","article-title":"A simple and effective model-based variable importance measure","volume":"23","author":"Greenwell","year":"2018","journal-title":"Environ. Model. Softw."},{"key":"10.1016\/j.knosys.2021.107737_b16","first-page":"361","article-title":"Regression tress with unbiased variable selection and interaction detection","author":"Loh","year":"2002","journal-title":"Statist. Sinica"},{"key":"10.1016\/j.knosys.2021.107737_b17","doi-asserted-by":"crossref","unstructured":"Y. Lou, R. Caruana, J. Gehrke, G. Hooker, Accurate intelligible models with pairwise interactions, in: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2013, pp. 623\u2013631.","DOI":"10.1145\/2487575.2487579"},{"issue":"3","key":"10.1016\/j.knosys.2021.107737_b18","doi-asserted-by":"crossref","first-page":"916","DOI":"10.1214\/07-AOAS148","article-title":"Predictive learning via rule ensembles","volume":"2","author":"Friedman","year":"2008","journal-title":"Ann. Appl. Stat."},{"issue":"5\u20136","key":"10.1016\/j.knosys.2021.107737_b19","doi-asserted-by":"crossref","first-page":"1503","DOI":"10.1007\/s10618-014-0368-8","article-title":"A peek into the black box: exploring classifiers by randomization","volume":"28","author":"Henelius","year":"2014","journal-title":"Data Min. Knowl. Discov."},{"key":"10.1016\/j.knosys.2021.107737_b20","unstructured":"M. Tsang, D. Cheng, Y. Liu, Detecting statistical interactions from neural network weights, in: ICLR Conference, 2018."},{"key":"10.1016\/j.knosys.2021.107737_b21","unstructured":"M. Tsang, H. Liu, S. Purushotham, P. Murali, Y. Liu, Neural interaction transparency (nit): Disentangling learned interactions for improved interpretability, in: Advances in Neural Information Processing Systems, 2018, pp. 5804\u20135813."},{"key":"10.1016\/j.knosys.2021.107737_b22","series-title":"Breakthroughs in Statistics","first-page":"66","article-title":"Statistical methods for research workers","author":"Fisher","year":"1992"},{"issue":"1","key":"10.1016\/j.knosys.2021.107737_b23","doi-asserted-by":"crossref","first-page":"267","DOI":"10.1111\/j.2517-6161.1996.tb02080.x","article-title":"Regression shrinkage and selection via the lasso","volume":"58","author":"Tibshirani","year":"1996","journal-title":"J. R. Stat. Soc. Ser. B Stat. Methodol."},{"key":"10.1016\/j.knosys.2021.107737_b24","unstructured":"D. Sorokina, R. Caruana, M. Riedewald, Additive Groves of Regression Trees, in: European Conference on Machine Learning, 2007."},{"key":"10.1016\/j.knosys.2021.107737_b25","series-title":"International Symposium on Statistical Learning and Data Sciences","first-page":"96","article-title":"Goldeneye++: A closer look into the black box","author":"Henelius","year":"2015"},{"issue":"23","key":"10.1016\/j.knosys.2021.107737_b26","doi-asserted-by":"crossref","first-page":"5191","DOI":"10.3390\/app9235191","article-title":"Feature interaction in terms of prediction performance","volume":"9","author":"Oh","year":"2019","journal-title":"Appl. Sci."},{"key":"10.1016\/j.knosys.2021.107737_b27","first-page":"1189","article-title":"Greedy function approximation: a gradient boosting machine","author":"Friedman","year":"2001","journal-title":"Ann. Statist."},{"key":"10.1016\/j.knosys.2021.107737_b28","first-page":"407","article-title":"Sensitivity analysis for non-linear mathematical models","volume":"1","author":"Sobol","year":"1993","journal-title":"Math. Model. Comput. Exp."},{"issue":"3","key":"10.1016\/j.knosys.2021.107737_b29","doi-asserted-by":"crossref","first-page":"212","DOI":"10.1016\/S0010-4655(01)00159-X","article-title":"Sensitivity analysis in model calibration: GSA-GLUE approach","volume":"136","author":"Ratto","year":"2001","journal-title":"Comput. Phys. Comm."},{"year":"2008","series-title":"Global sensitivity analysis: the primer","author":"Saltelli","key":"10.1016\/j.knosys.2021.107737_b30"},{"issue":"2","key":"10.1016\/j.knosys.2021.107737_b31","doi-asserted-by":"crossref","first-page":"219","DOI":"10.1007\/s00158-009-0420-2","article-title":"Survey of modeling and optimization strategies to solve high-dimensional design problems with computationally-expensive black-box functions","volume":"41","author":"Shan","year":"2010","journal-title":"Struct. Multidiscip. Optim."},{"issue":"2","key":"10.1016\/j.knosys.2021.107737_b32","doi-asserted-by":"crossref","first-page":"187","DOI":"10.1016\/S0951-8320(02)00229-6","article-title":"Theorems and examples on high dimensional model representation","volume":"79","author":"Sobol\u2019","year":"2003","journal-title":"Reliab. Eng. Syst. Saf."},{"key":"10.1016\/j.knosys.2021.107737_b33","doi-asserted-by":"crossref","unstructured":"S. Lerman, C. Xu, C. Venuto, H. Kautz, Explaining Local, Global, And Higher-Order Interactions In Deep Learning, in: ICCV, 2021.","DOI":"10.1109\/ICCV48922.2021.00126"},{"issue":"1","key":"10.1016\/j.knosys.2021.107737_b34","doi-asserted-by":"crossref","first-page":"81","DOI":"10.1016\/0095-0696(78)90006-2","article-title":"Hedonic housing prices and the demand for clean air","volume":"5","author":"Harrison\u00a0Jr.","year":"1978","journal-title":"J. Environ. Econ. Manag."},{"key":"10.1016\/j.knosys.2021.107737_b35","series-title":"24th European Conference on Artificial Intelligence, ECAI 2020, Including 10th Conference on Prestigious Applications of Artificial Intelligence","first-page":"1087","article-title":"Learning global pairwise interactions with bayesian neural networks","author":"Cui","year":"2020"},{"key":"10.1016\/j.knosys.2021.107737_b36","doi-asserted-by":"crossref","unstructured":"Y. Lou, Y. Wang, S. Liang, Y. Dong, Efficiently Training Intelligible Models for Global Explanations, in: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, 2020, pp. 2637\u20132644.","DOI":"10.1145\/3340531.3412702"}],"container-title":["Knowledge-Based Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0950705121009722?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0950705121009722?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T19:11:26Z","timestamp":1726168286000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0950705121009722"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,1]]},"references-count":36,"alternative-id":["S0950705121009722"],"URL":"https:\/\/doi.org\/10.1016\/j.knosys.2021.107737","relation":{},"ISSN":["0950-7051"],"issn-type":[{"type":"print","value":"0950-7051"}],"subject":[],"published":{"date-parts":[[2022,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Revealing the structure of prediction models through feature interaction detection","name":"articletitle","label":"Article Title"},{"value":"Knowledge-Based Systems","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.knosys.2021.107737","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"107737"}}