{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,10]],"date-time":"2024-09-10T14:10:19Z","timestamp":1725977419335},"reference-count":76,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Knowledge-Based Systems"],"published-print":{"date-parts":[[2022,1]]},"DOI":"10.1016\/j.knosys.2021.107598","type":"journal-article","created":{"date-parts":[[2021,10,22]],"date-time":"2021-10-22T02:13:22Z","timestamp":1634868802000},"page":"107598","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":24,"special_numbering":"C","title":["Exploration meets exploitation: Multitask learning for emotion recognition based on discrete and dimensional models"],"prefix":"10.1016","volume":"235","author":[{"given":"Geng","family":"Tu","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6355-3014","authenticated-orcid":false,"given":"Jintao","family":"Wen","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8593-9276","authenticated-orcid":false,"given":"Hao","family":"Liu","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3692-0728","authenticated-orcid":false,"given":"Sentao","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Lin","family":"Zheng","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0781-9126","authenticated-orcid":false,"given":"Dazhi","family":"Jiang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.knosys.2021.107598_b1","doi-asserted-by":"crossref","first-page":"279","DOI":"10.1016\/j.future.2020.08.005","article-title":"ABCDM: An attention-based bidirectional CNN-RNN deep model for sentiment analysis","volume":"115","author":"Basiri","year":"2021","journal-title":"Future Gener. Comput. Syst."},{"key":"10.1016\/j.knosys.2021.107598_b2","doi-asserted-by":"crossref","unstructured":"Erik Cambria, Yang Li, Frank\u00a0Z. Xing, Soujanya Poria, Kenneth Kwok, Senticnet 6: Ensemble application of symbolic and subsymbolic ai for sentiment analysis, in: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, 2020, pp. 105\u2013114.","DOI":"10.1145\/3340531.3412003"},{"key":"10.1016\/j.knosys.2021.107598_b3","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.knosys.2014.07.002","article-title":"Guest editorial: Big social data analysis","volume":"69","author":"Cambria","year":"2014","journal-title":"Knowl.-Based Syst."},{"issue":"1","key":"10.1016\/j.knosys.2021.107598_b4","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/2192-1962-3-9","article-title":"Intention awareness: improving upon situation awareness in human-centric environments","volume":"3","author":"Howard","year":"2013","journal-title":"Human-Centric Comput. Inf. Sci."},{"key":"10.1016\/j.knosys.2021.107598_b5","doi-asserted-by":"crossref","unstructured":"Navonil Majumder, Soujanya Poria, Devamanyu Hazarika, Rada Mihalcea, Alexander Gelbukh, Erik Cambria, Dialoguernn: An attentive rnn for emotion detection in conversations. in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, 2019, pp. 6818\u20136825.","DOI":"10.1609\/aaai.v33i01.33016818"},{"key":"10.1016\/j.knosys.2021.107598_b6","doi-asserted-by":"crossref","unstructured":"Devamanyu Hazarika, Soujanya Poria, Rada Mihalcea, Erik Cambria, Roger Zimmermann, Icon: Interactive conversational memory network for multimodal emotion detection, in: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, 2018 pp. 2594\u20132604.","DOI":"10.18653\/v1\/D18-1280"},{"key":"10.1016\/j.knosys.2021.107598_b7","doi-asserted-by":"crossref","first-page":"50","DOI":"10.1016\/j.inffus.2020.06.011","article-title":"A survey on empathetic dialogue systems","volume":"64","author":"Ma","year":"2020","journal-title":"Inf. Fusion"},{"key":"10.1016\/j.knosys.2021.107598_b8","article-title":"Emotion recognition on twitter: Comparative study and training a unison model","author":"Colneri\u0109","year":"2018","journal-title":"IEEE Trans. Affect. Comput."},{"issue":"4","key":"10.1016\/j.knosys.2021.107598_b9","doi-asserted-by":"crossref","first-page":"384","DOI":"10.1037\/0003-066X.48.4.384","article-title":"Facial expression and emotion","volume":"48","author":"Ekman","year":"1993","journal-title":"Am. Psychol."},{"issue":"3","key":"10.1016\/j.knosys.2021.107598_b10","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1016\/0092-6566(77)90037-X","article-title":"Evidence for a three-factor theory of emotions","volume":"11","author":"Russell","year":"1977","journal-title":"J. Res. Personal."},{"key":"10.1016\/j.knosys.2021.107598_b11","doi-asserted-by":"crossref","first-page":"100943","DOI":"10.1109\/ACCESS.2019.2929050","article-title":"Emotion recognition in conversation: Research challenges, datasets, and recent advances","volume":"7","author":"Poria","year":"2019","journal-title":"IEEE Access"},{"issue":"9","key":"10.1016\/j.knosys.2021.107598_b12","doi-asserted-by":"crossref","first-page":"458","DOI":"10.1016\/j.tics.2012.07.006","article-title":"Mapping discrete and dimensional emotions onto the brain: controversies and consensus","volume":"16","author":"Hamann","year":"2012","journal-title":"Trends Cogn. Sci."},{"issue":"38","key":"10.1016\/j.knosys.2021.107598_b13","doi-asserted-by":"crossref","first-page":"E7900","DOI":"10.1073\/pnas.1702247114","article-title":"Self-report captures 27 distinct categories of emotion bridged by continuous gradients","volume":"114","author":"Cowen","year":"2017","journal-title":"Proc. Natl. Acad. Sci."},{"key":"10.1016\/j.knosys.2021.107598_b14","doi-asserted-by":"crossref","unstructured":"Ehab\u00a0A. AlBadawy, Yelin Kim, Joint discrete and continuous emotion prediction using ensemble and end-to-end approaches, in: Proceedings of the 20th ACM International Conference on Multimodal Interaction, 2018, pp. 366\u2013375.","DOI":"10.1145\/3242969.3242972"},{"key":"10.1016\/j.knosys.2021.107598_b15","unstructured":"Sven Buechel, Udo Hahn, A flexible mapping scheme for discrete and dimensional emotion representations: Evidence from textual stimuli, in: CogSci 2017\u2014Proceedings of the 39th Annual Meeting of the Cognitive Science Society, 2017, pp. 180\u2013185."},{"issue":"5","key":"10.1016\/j.knosys.2021.107598_b16","doi-asserted-by":"crossref","first-page":"96","DOI":"10.1109\/MIS.2020.2992799","article-title":"The hourglass model revisited","volume":"35","author":"Susanto","year":"2020","journal-title":"IEEE Intell. Syst."},{"key":"10.1016\/j.knosys.2021.107598_b17","article-title":"Attention-emotion-enhanced convolutional LSTM for sentiment analysis","author":"Huang","year":"2021","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.knosys.2021.107598_b18","doi-asserted-by":"crossref","unstructured":"Saif Mohammad, Obtaining reliable human ratings of valence, arousal, and dominance for 20,000 english words, in: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2018, pp. 174\u2013184.","DOI":"10.18653\/v1\/P18-1017"},{"key":"10.1016\/j.knosys.2021.107598_b19","doi-asserted-by":"crossref","unstructured":"Yan Wang, Jiayu Zhang, Jun Ma, Shaojun Wang, Jing Xiao, Contextualized emotion recognition in conversation as sequence tagging, in: Proceedings of the 21th Annual Meeting of the Special Interest Group on Discourse and Dialogue, 2020, pp. 186\u2013195.","DOI":"10.18653\/v1\/2020.sigdial-1.23"},{"key":"10.1016\/j.knosys.2021.107598_b20","article-title":"Multi-task semi-supervised adversarial autoencoding for speech emotion recognition","author":"Latif","year":"2020","journal-title":"IEEE Trans. Affect. Comput."},{"key":"10.1016\/j.knosys.2021.107598_b21","series-title":"Interspeech","first-page":"1103","article-title":"Jointly predicting arousal, valence and dominance with multi-task learning","author":"Parthasarathy","year":"2017"},{"key":"10.1016\/j.knosys.2021.107598_b22","series-title":"ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","first-page":"4482","article-title":"Multitask learning and multistage fusion for dimensional audiovisual emotion recognition","author":"Atmaja","year":"2020"},{"issue":"2","key":"10.1016\/j.knosys.2021.107598_b23","doi-asserted-by":"crossref","first-page":"44","DOI":"10.1109\/MIS.2012.118","article-title":"Semantic multidimensional scaling for open-domain sentiment analysis","volume":"29","author":"Cambria","year":"2012","journal-title":"IEEE Intell. Syst."},{"issue":"3","key":"10.1016\/j.knosys.2021.107598_b24","doi-asserted-by":"crossref","first-page":"480","DOI":"10.1007\/s12559-011-9101-8","article-title":"Sentic web: A new paradigm for managing social media affective information","volume":"3","author":"Grassi","year":"2011","journal-title":"Cogn. Comput."},{"year":"2019","series-title":"Dialoguegcn: A graph convolutional neural network for emotion recognition in conversation","author":"Ghosal","key":"10.1016\/j.knosys.2021.107598_b25"},{"key":"10.1016\/j.knosys.2021.107598_b26","series-title":"2010 International Workshop on Content Based Multimedia Indexing (CBMI)","first-page":"1","article-title":"Classification of affective semantics in images based on discrete and dimensional models of emotions","author":"Dellandrea","year":"2010"},{"issue":"1","key":"10.1016\/j.knosys.2021.107598_b27","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1109\/TAFFC.2015.2512598","article-title":"A multi-task learning framework for emotion recognition using 2d continuous space","volume":"8","author":"Xia","year":"2015","journal-title":"IEEE Trans. Affect. Comput."},{"key":"10.1016\/j.knosys.2021.107598_b28","article-title":"All-in-one: Emotion, sentiment and intensity prediction using a multi-task ensemble framework","author":"Akhtar","year":"2019","journal-title":"IEEE Trans. Affect. Comput."},{"key":"10.1016\/j.knosys.2021.107598_b29","first-page":"5","article-title":"Ontosenticnet 2: Enhancing reasoning within sentiment analysis","volume":"36","author":"Dragoni","year":"2021","journal-title":"IEEE Intell. Syst."},{"issue":"2","key":"10.1016\/j.knosys.2021.107598_b30","doi-asserted-by":"crossref","first-page":"88","DOI":"10.1109\/MIS.2021.3062200","article-title":"Sentiment analysis and topic recognition in video transcriptions","volume":"36","author":"Stappen","year":"2021","journal-title":"IEEE Intell. Syst."},{"key":"10.1016\/j.knosys.2021.107598_b31","doi-asserted-by":"crossref","first-page":"35553","DOI":"10.1007\/s11042-019-08328-z","article-title":"A review of emotion sensing: Categorization models and algorithms","volume":"79","author":"Wang","year":"2020","journal-title":"Multimedia Tools Appl."},{"key":"10.1016\/j.knosys.2021.107598_b32","doi-asserted-by":"crossref","first-page":"64","DOI":"10.1016\/j.knosys.2019.02.012","article-title":"Learning binary codes with neural collaborative filtering for efficient recommendation systems","volume":"172","author":"Li","year":"2019","journal-title":"Knowl.-Based Syst."},{"year":"2021","series-title":"Dialoguecrn: Contextual reasoning networks for emotion recognition in conversations","author":"Hu","key":"10.1016\/j.knosys.2021.107598_b33"},{"key":"10.1016\/j.knosys.2021.107598_b34","doi-asserted-by":"crossref","unstructured":"Dongming Sheng, Dong Wang, Ying Shen, Haitao Zheng, Haozhuang Liu, Summarize before aggregate: a global-to-local heterogeneous graph inference network for conversational emotion recognition, in: Proceedings of the 28th International Conference on Computational Linguistics, 2020, pp. 4153\u20134163.","DOI":"10.18653\/v1\/2020.coling-main.367"},{"key":"10.1016\/j.knosys.2021.107598_b35","article-title":"Bieru: Bidirectional emotional recurrent unit for conversational sentiment analysis","author":"Li","year":"2021","journal-title":"Neurocomputing"},{"key":"10.1016\/j.knosys.2021.107598_b36","doi-asserted-by":"crossref","unstructured":"Laurence Devillers, Laurence Vidrascu, Real-life emotions detection with lexical and paralinguistic cues on human-human call center dialogs, in: Ninth International Conference on Spoken Language Processing, 2006.","DOI":"10.21437\/Interspeech.2006-275"},{"issue":"2","key":"10.1016\/j.knosys.2021.107598_b37","doi-asserted-by":"crossref","first-page":"293","DOI":"10.1109\/TSA.2004.838534","article-title":"Toward detecting emotions in spoken dialogs","volume":"13","author":"Lee","year":"2005","journal-title":"IEEE Trans. Speech Audio Process."},{"key":"10.1016\/j.knosys.2021.107598_b38","unstructured":"Laurence Devillers, Ioana Vasilescu, Lori Lamel, Annotation and detection of emotion in a task-oriented human-human dialog corpus, in: Proceedings of ISLE Workshop, Vol. 20, 2002, pp. 43."},{"key":"10.1016\/j.knosys.2021.107598_b39","doi-asserted-by":"crossref","first-page":"301","DOI":"10.1016\/j.ins.2018.03.050","article-title":"A generative model for category text generation","volume":"450","author":"Li","year":"2018","journal-title":"Inform. Sci."},{"key":"10.1016\/j.knosys.2021.107598_b40","series-title":"Proceedings of the Conference. Association for Computational Linguistics. North American Chapter. Meeting","first-page":"2122","article-title":"Conversational memory network for emotion recognition in dyadic dialogue videos","volume":"2018","author":"Hazarika","year":"2018"},{"key":"10.1016\/j.knosys.2021.107598_b41","unstructured":"Wenxiang Jiao, Haiqin Yang, Irwin King, Michael\u00a0R. Lyu, Higru: Hierarchical gated recurrent units for utterance-level emotion recognition, in: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), 2019, pp. 397\u2013406."},{"key":"10.1016\/j.knosys.2021.107598_b42","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2021.107449","article-title":"Enhancing emotion inference in conversations with commonsense knowledge","author":"Li","year":"2021","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.knosys.2021.107598_b43","doi-asserted-by":"crossref","unstructured":"Deepanway Ghosal, Navonil Majumder, Alexander Gelbukh, Rada Mihalcea, Soujanya Poria, Cosmic: Commonsense knowledge for emotion identification in conversations, in: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings, 2020, pp. 2470\u20132481.","DOI":"10.18653\/v1\/2020.findings-emnlp.224"},{"issue":"264\u2013270","key":"10.1016\/j.knosys.2021.107598_b44","article-title":"Fuzzy commonsense reasoning for multimodal sentiment analysis","volume":"125","author":"Chaturvedi","year":"2019","journal-title":"Pattern Recognit. Lett."},{"issue":"1","key":"10.1016\/j.knosys.2021.107598_b45","doi-asserted-by":"crossref","first-page":"30","DOI":"10.1093\/nsr\/nwx105","article-title":"An overview of multi-task learning","volume":"5","author":"Zhang","year":"2018","journal-title":"Nat. Sci. Rev."},{"year":"2019","series-title":"Multi-task learning for multi-modal emotion recognition and sentiment analysis","author":"Akhtar","key":"10.1016\/j.knosys.2021.107598_b46"},{"year":"2021","series-title":"Multitask learning for emotion and personality detection","author":"Li","key":"10.1016\/j.knosys.2021.107598_b47"},{"year":"2016","series-title":"Learning Sentence Embeddings with Auxiliary Tasks for Cross-Domain Sentiment Classification","author":"Yu","key":"10.1016\/j.knosys.2021.107598_b48"},{"key":"10.1016\/j.knosys.2021.107598_b49","series-title":"International Conference on Neural Information Processing","first-page":"661","article-title":"Attention based shared representation for multi-task stance detection and sentiment analysis","author":"Chauhan","year":"2019"},{"key":"10.1016\/j.knosys.2021.107598_b50","doi-asserted-by":"crossref","DOI":"10.1016\/j.measurement.2019.107049","article-title":"A probability and integrated learning based classification algorithm for high-level human emotion recognition problems","volume":"150","author":"Jiang","year":"2020","journal-title":"Measurement"},{"key":"10.1016\/j.knosys.2021.107598_b51","article-title":"Multi-modality sentiment analysis in social internet of things based on hierarchical attentions and csattcn with mbm network","author":"Xiao","year":"2020","journal-title":"IEEE Internet Things J."},{"issue":"1","key":"10.1016\/j.knosys.2021.107598_b52","doi-asserted-by":"crossref","first-page":"221","DOI":"10.1109\/TPAMI.2012.59","article-title":"3D convolutional neural networks for human action recognition","volume":"35","author":"Ji","year":"2012","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.knosys.2021.107598_b53","doi-asserted-by":"crossref","unstructured":"Florian Eyben, Martin W\u00f6llmer, Bj\u00f6rn Schuller, Opensmile: the munich versatile and fast open-source audio feature extractor, in: Proceedings of the 18th ACM International Conference on Multimedia, 2010, pp. 1459\u20131462.","DOI":"10.1145\/1873951.1874246"},{"year":"2013","series-title":"Efficient estimation of word representations in vector space","author":"Mikolov","key":"10.1016\/j.knosys.2021.107598_b54"},{"key":"10.1016\/j.knosys.2021.107598_b55","doi-asserted-by":"crossref","unstructured":"Colin Lea, Michael\u00a0D. Flynn, Rene Vidal, Austin Reiter, Gregory\u00a0D. Hager, Temporal convolutional networks for action segmentation and detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 156\u2013165.","DOI":"10.1109\/CVPR.2017.113"},{"key":"10.1016\/j.knosys.2021.107598_b56","series-title":"European Semantic Web Conference","first-page":"593","article-title":"Modeling relational data with graph convolutional networks","author":"Schlichtkrull","year":"2018"},{"year":"2017","series-title":"Graph attention networks","author":"Veli\u010dkovi\u0107","key":"10.1016\/j.knosys.2021.107598_b57"},{"key":"10.1016\/j.knosys.2021.107598_b58","series-title":"Advances in Neural Information Processing Systems","first-page":"5998","article-title":"Attention is all you need","author":"Vaswani","year":"2017"},{"key":"10.1016\/j.knosys.2021.107598_b59","doi-asserted-by":"crossref","DOI":"10.1016\/j.physa.2021.126485","article-title":"Attention meets long short-term memory: a deep learning network for traffic flow forecasting","author":"Fang","year":"2022","journal-title":"Physica A: Statistical Mechanics and its Applications"},{"key":"10.1016\/j.knosys.2021.107598_b60","series-title":"Advances in Neural Information Processing Systems","first-page":"527","article-title":"Multi-task learning as multi-objective optimization","author":"Sener","year":"2018"},{"year":"2020","series-title":"A simple general approach to balance task difficulty in multi-task learning","author":"Liang","key":"10.1016\/j.knosys.2021.107598_b61"},{"key":"10.1016\/j.knosys.2021.107598_b62","unstructured":"Alex Kendall, Yarin Gal, Roberto Cipolla, Multi-task learning using uncertainty to weigh losses for scene geometry and semantics, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7482\u20137491."},{"issue":"4","key":"10.1016\/j.knosys.2021.107598_b63","doi-asserted-by":"crossref","first-page":"335","DOI":"10.1007\/s10579-008-9076-6","article-title":"Iemocap: Interactive emotional dyadic motion capture database","volume":"42","author":"Busso","year":"2008","journal-title":"Lang. Res. Eval."},{"key":"10.1016\/j.knosys.2021.107598_b64","doi-asserted-by":"crossref","unstructured":"Bj\u00f6rn Schuller, Michel Valster, Florian Eyben, Roddy Cowie, Maja Pantic, AVEC 2012: the continuous audio\/visual emotion challenge, in: Proceedings of the 14th ACM International Conference on Multimodal Interaction, 2012, pp. 449\u2013456.","DOI":"10.1145\/2388676.2388776"},{"key":"10.1016\/j.knosys.2021.107598_b65","series-title":"ACL","first-page":"527","article-title":"MELD: A multimodal multi-party dataset for emotion recognition in conversations","author":"Poria","year":"2019"},{"year":"2014","series-title":"Convolutional neural networks for sentence classification","author":"Kim","key":"10.1016\/j.knosys.2021.107598_b66"},{"key":"10.1016\/j.knosys.2021.107598_b67","series-title":"Advances in Neural Information Processing Systems","first-page":"2440","article-title":"End-to-end memory networks","author":"Sukhbaatar","year":"2015"},{"key":"10.1016\/j.knosys.2021.107598_b68","doi-asserted-by":"crossref","unstructured":"Soujanya Poria, Erik Cambria, Devamanyu Hazarika, Navonil Majumder, Amir Zadeh, Louis-Philippe Morency, Context-dependent sentiment analysis in user-generated videos, in: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2017, pp. 873\u2013883.","DOI":"10.18653\/v1\/P17-1081"},{"key":"10.1016\/j.knosys.2021.107598_b69","doi-asserted-by":"crossref","unstructured":"Sijie Mai, Haifeng Hu, Songlong Xing, Divide, conquer and combine: Hierarchical feature fusion network with local and global perspectives for multimodal affective computing, in: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 2019, pp. 481\u2013492.","DOI":"10.18653\/v1\/P19-1046"},{"issue":"1","key":"10.1016\/j.knosys.2021.107598_b70","doi-asserted-by":"crossref","first-page":"122","DOI":"10.1109\/TMM.2019.2925966","article-title":"Locally confined modality fusion network with a global perspective for multimodal human affective computing","volume":"22","author":"Mai","year":"2019","journal-title":"IEEE Trans. Multimed."},{"key":"10.1016\/j.knosys.2021.107598_b71","doi-asserted-by":"crossref","unstructured":"Sijie Mai, Haifeng Hu, Songlong Xing, Modality to modality translation: An adversarial representation learning and graph fusion network for multimodal fusion. in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, 2020, pp. 164\u2013172.","DOI":"10.1609\/aaai.v34i01.5347"},{"key":"10.1016\/j.knosys.2021.107598_b72","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2021.107258","article-title":"Taylor\u2019s theorem: A new perspective for neural tensor networks","volume":"228","author":"Li","year":"2021","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.knosys.2021.107598_b73","unstructured":"Yingmei Guo, Zhiyong Wu, Mingxing Xu, Fernet: Fine-grained extraction and reasoning network for emotion recognition in dialogues, in: Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing, 2020, pp. 37\u201343."},{"key":"10.1016\/j.knosys.2021.107598_b74","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.inffus.2020.06.005","article-title":"Conversational transfer learning for emotion recognition","volume":"65","author":"Hazarika","year":"2021","journal-title":"Inf. Fusion"},{"key":"10.1016\/j.knosys.2021.107598_b75","doi-asserted-by":"crossref","unstructured":"Qiuchi Li, Dimitris Gkoumas, Alessandro Sordoni, Jian-Yun Nie, Massimo Melucci, Quantum-inspired neural network for conversational emotion recognition, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35, 2021, pp. 13270\u201313278.","DOI":"10.1609\/aaai.v35i15.17567"},{"key":"10.1016\/j.knosys.2021.107598_b76","series-title":"IJCAI","first-page":"5415","article-title":"Modeling both context-and speaker-sensitive dependence for emotion detection in multi-speaker conversations","author":"Zhang","year":"2019"}],"container-title":["Knowledge-Based Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0950705121008601?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0950705121008601?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,9,10]],"date-time":"2024-09-10T13:17:39Z","timestamp":1725974259000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0950705121008601"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,1]]},"references-count":76,"alternative-id":["S0950705121008601"],"URL":"https:\/\/doi.org\/10.1016\/j.knosys.2021.107598","relation":{},"ISSN":["0950-7051"],"issn-type":[{"type":"print","value":"0950-7051"}],"subject":[],"published":{"date-parts":[[2022,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Exploration meets exploitation: Multitask learning for emotion recognition based on discrete and dimensional models","name":"articletitle","label":"Article Title"},{"value":"Knowledge-Based Systems","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.knosys.2021.107598","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"107598"}}