{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,22]],"date-time":"2025-03-22T11:37:59Z","timestamp":1742643479010,"version":"3.37.3"},"reference-count":78,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,10,1]],"date-time":"2021-10-01T00:00:00Z","timestamp":1633046400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,7,22]],"date-time":"2021-07-22T00:00:00Z","timestamp":1626912000000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/100010661","name":"Horizon 2020 Framework Programme","doi-asserted-by":"publisher","award":["870702","P2-0001"],"id":[{"id":"10.13039\/100010661","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100014028","name":"H2020","doi-asserted-by":"publisher","award":["870702","P2-0001"],"id":[{"id":"10.13039\/100014028","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004329","name":"Javna Agencija za Raziskovalno Dejavnost RS","doi-asserted-by":"publisher","award":["870702","P2-0001"],"id":[{"id":"10.13039\/501100004329","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Knowledge-Based Systems"],"published-print":{"date-parts":[[2021,10]]},"DOI":"10.1016\/j.knosys.2021.107335","type":"journal-article","created":{"date-parts":[[2021,7,24]],"date-time":"2021-07-24T07:06:23Z","timestamp":1627110383000},"page":"107335","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":10,"special_numbering":"C","title":["Variational Bayes survival analysis for unemployment modelling"],"prefix":"10.1016","volume":"229","author":[{"ORCID":"https:\/\/orcid.org\/0000-0003-4498-0509","authenticated-orcid":false,"given":"Pavle","family":"Bo\u0161koski","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-7791-018X","authenticated-orcid":false,"given":"Matija","family":"Perne","sequence":"additional","affiliation":[]},{"given":"Martina","family":"Rame\u0161a","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-1137-9795","authenticated-orcid":false,"given":"Biljana Mileva","family":"Boshkoska","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"2","key":"10.1016\/j.knosys.2021.107335_b1","doi-asserted-by":"crossref","first-page":"223","DOI":"10.1108\/ER-02-2016-0042","article-title":"Employability and job search behavior: A six-wave longitudinal study of Chinese university graduates","volume":"39","author":"Yizhong","year":"2017","journal-title":"Empl. Relat."},{"issue":"475","key":"10.1016\/j.knosys.2021.107335_b2","doi-asserted-by":"crossref","first-page":"F585","DOI":"10.1111\/1468-0297.00664","article-title":"Is unemployment really scarring? Effects of unemployment experiences on wages","volume":"111","author":"Arulampalam","year":"2001","journal-title":"Econ. J."},{"issue":"1","key":"10.1016\/j.knosys.2021.107335_b3","doi-asserted-by":"crossref","first-page":"46","DOI":"10.1016\/j.puhe.2012.10.016","article-title":"Health status and health behaviour as predictors of the occurrence of unemployment and prolonged unemployment","volume":"127","author":"Virtanen","year":"2013","journal-title":"Public Health"},{"issue":"3","key":"10.1016\/j.knosys.2021.107335_b4","doi-asserted-by":"crossref","first-page":"440","DOI":"10.1093\/eurpub\/cku005","article-title":"Unemployment and mental health scarring during the life course","volume":"24","author":"Strandh","year":"2014","journal-title":"Eur. J. Publ. Health"},{"issue":"1","key":"10.1016\/j.knosys.2021.107335_b5","doi-asserted-by":"crossref","first-page":"47","DOI":"10.1080\/19187033.2015.11674937","article-title":"Statistical profiling of the unemployed","volume":"96","author":"Grundy","year":"2015","journal-title":"Stud. Political Econ."},{"year":"2011","series-title":"Risk profiling of long-term unemployment in Finland, Dialogue Conference \u2013 Brussels","author":"Riipinen","key":"10.1016\/j.knosys.2021.107335_b6"},{"issue":"6\u20137","key":"10.1016\/j.knosys.2021.107335_b7","doi-asserted-by":"crossref","first-page":"740","DOI":"10.1177\/0269094214545045","article-title":"The work profiler: A digital instrument for selection and diagnosis of the unemployed","volume":"29","author":"Wijnhoven","year":"2014","journal-title":"Local Econ.: J. Local Econ. Policy Unit"},{"key":"10.1016\/j.knosys.2021.107335_b8","series-title":"Resarch Series, no. 10","article-title":"National profiling of the unemployed in Ireland","author":"O\u2019Connell","year":"2009"},{"year":"2014","series-title":"Profiling the Unemployed : A Review of OECD Experiences and Implications for Emerging Economics","author":"Loxha","key":"10.1016\/j.knosys.2021.107335_b9"},{"key":"10.1016\/j.knosys.2021.107335_b10","doi-asserted-by":"crossref","first-page":"118","DOI":"10.1016\/j.labeco.2017.04.001","article-title":"Learning about match quality: Information flows and labor market outcomes","volume":"46","author":"Sengul","year":"2017","journal-title":"Lab. Econ."},{"issue":"2","key":"10.1016\/j.knosys.2021.107335_b11","doi-asserted-by":"crossref","first-page":"127","DOI":"10.1016\/j.red.2012.02.001","article-title":"Reassessing the ins and outs of unemployment","volume":"15","author":"Shimer","year":"2012","journal-title":"Rev. Econ. Dyn."},{"issue":"S1","key":"10.1016\/j.knosys.2021.107335_b12","doi-asserted-by":"crossref","first-page":"S23","DOI":"10.1111\/ijsw.12088","article-title":"Towards \u2018activation-friendly\u2019 integration? Assessing the progress of activation policies in six European countries","volume":"23","author":"Berthet","year":"2014","journal-title":"Int. J. Soc. Welfare"},{"issue":"1","key":"10.1016\/j.knosys.2021.107335_b13","doi-asserted-by":"crossref","first-page":"3449","DOI":"10.1038\/s41467-019-11380-w","article-title":"Global labor flow network reveals the hierarchical organization and dynamics of geo-industrial clusters","volume":"10","author":"Park","year":"2019","journal-title":"Nature Commun."},{"year":"2015","series-title":"The network picture of labor flow","author":"L\u00f3pez","key":"10.1016\/j.knosys.2021.107335_b14"},{"issue":"4047","key":"10.1016\/j.knosys.2021.107335_b15","doi-asserted-by":"crossref","first-page":"393","DOI":"10.1126\/science.177.4047.393","article-title":"More is different","volume":"177","author":"Anderson","year":"1972","journal-title":"Science"},{"issue":"5","key":"10.1016\/j.knosys.2021.107335_b16","doi-asserted-by":"crossref","first-page":"647","DOI":"10.1177\/0268580906067835","article-title":"A crazy methodology? On the limits of macro-quantitative social science research","volume":"21","author":"Kittel","year":"2006","journal-title":"Int. Sociol."},{"issue":"S1","key":"10.1016\/j.knosys.2021.107335_b17","doi-asserted-by":"crossref","first-page":"221","DOI":"10.1007\/s11577-019-00599-6","article-title":"Employment and its institutional contexts","volume":"71","author":"Erlinghagen","year":"2019","journal-title":"KZfSS K\u00f6lner Z. Soziol. Sozialpsychol."},{"key":"10.1016\/j.knosys.2021.107335_b18","doi-asserted-by":"crossref","first-page":"785","DOI":"10.1093\/biostatistics\/kxv012","article-title":"Semiparametric likelihood inference for left-truncated and right-censored data.","volume":"16","author":"Huang","year":"2015","journal-title":"Biostatistics"},{"key":"10.1016\/j.knosys.2021.107335_b19","doi-asserted-by":"crossref","first-page":"241","DOI":"10.1007\/BF00985759","article-title":"An analytic method for randomized trials with informative censoring: Part 1","volume":"1","author":"Robins","year":"1995","journal-title":"Lifetime Data Anal."},{"issue":"4","key":"10.1016\/j.knosys.2021.107335_b20","doi-asserted-by":"crossref","first-page":"2678","DOI":"10.1080\/03610918.2015.1056355","article-title":"Efficiency estimation of type-I censored sample from the Weibull distribution based on sup-entropy","volume":"46","author":"Kittaneh","year":"2017","journal-title":"Comm. Statist. Simulation Comput."},{"year":"2001","series-title":"Bayesian Survival Analysis","author":"Ibrahim","key":"10.1016\/j.knosys.2021.107335_b21"},{"issue":"2","key":"10.1016\/j.knosys.2021.107335_b22","doi-asserted-by":"crossref","first-page":"187","DOI":"10.1111\/j.2517-6161.1972.tb00899.x","article-title":"Regression models and life-tables","volume":"34","author":"Cox","year":"1972","journal-title":"J. R. Stat. Soc. Ser. B Stat. Methodol."},{"issue":"1","key":"10.1016\/j.knosys.2021.107335_b23","doi-asserted-by":"crossref","first-page":"73","DOI":"10.1002\/sim.4780140108","article-title":"A neural network model for survival data","volume":"14","author":"Faraggi","year":"1995","journal-title":"Stat. Med."},{"key":"10.1016\/j.knosys.2021.107335_b24","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2020.106164","article-title":"SurvLIME: A method for explaining machine learning survival models","volume":"203","author":"Kovalev","year":"2020","journal-title":"Knowl.-Based Syst."},{"year":"2016","series-title":"Entity embeddings of categorical variables","author":"Guo","key":"10.1016\/j.knosys.2021.107335_b25"},{"issue":"129","key":"10.1016\/j.knosys.2021.107335_b26","first-page":"1","article-title":"Time-to-event prediction with neural networks and cox regression","volume":"20","author":"Kvamme","year":"2019","journal-title":"J. Mach. Learn. Res."},{"issue":"1","key":"10.1016\/j.knosys.2021.107335_b27","doi-asserted-by":"crossref","first-page":"24","DOI":"10.1186\/s12874-018-0482-1","article-title":"DeepSurv: personalized treatment recommender system using a Cox proportional hazards deep neural network","volume":"18","author":"Katzman","year":"2018","journal-title":"BMC Med. Res. Methodol."},{"issue":"1","key":"10.1016\/j.knosys.2021.107335_b28","doi-asserted-by":"crossref","first-page":"122","DOI":"10.1109\/TBME.2019.2909027","article-title":"Dynamic-DeepHit: A deep learning approach for dynamic survival analysis with competing risks based on longitudinal data","volume":"67","author":"Lee","year":"2020","journal-title":"IEEE Trans. Biomed. Eng."},{"issue":"4","key":"10.1016\/j.knosys.2021.107335_b29","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1371\/journal.pcbi.1006076","article-title":"Cox-nnet: An artificial neural network method for prognosis prediction of high-throughput omics data","volume":"14","author":"Ching","year":"2018","journal-title":"PLoS Comput. Biol."},{"key":"10.1016\/j.knosys.2021.107335_b30","series-title":"Artificial Neural Networks and Machine Learning \u2013 ICANN 2018","first-page":"23","article-title":"RNN-SURV: A deep recurrent model for survival analysis","author":"Giunchiglia","year":"2018"},{"year":"2016","series-title":"WTTE-RNN : Weibull Time To Event Recurrent Neural Network","author":"Martinsson","key":"10.1016\/j.knosys.2021.107335_b31"},{"year":"2006","series-title":"The Variational Bayes Method in Signal Processing","author":"\u0160m\u00eddl","key":"10.1016\/j.knosys.2021.107335_b32"},{"issue":"104","key":"10.1016\/j.knosys.2021.107335_b33","first-page":"1","article-title":"A unifying framework for Gaussian process pseudo-point approximations using power expectation propagation","volume":"18","author":"Bui","year":"2017","journal-title":"J. Mach. Learn. Res."},{"year":"2014","series-title":"Scalable variational Gaussian process classification","author":"Hensman","key":"10.1016\/j.knosys.2021.107335_b34"},{"key":"10.1016\/j.knosys.2021.107335_b35","series-title":"Proceedings of the 31st International Conference on Machine Learning","first-page":"1278","article-title":"Stochastic backpropagation and approximate inference in deep generative models","volume":"vol. 32, no. 2","author":"Rezende","year":"2014"},{"issue":"11","key":"10.1016\/j.knosys.2021.107335_b36","doi-asserted-by":"crossref","first-page":"2815","DOI":"10.1109\/TSP.2013.2256901","article-title":"Variational Bayesian algorithm for quantized compressed sensing","volume":"61","author":"Yang","year":"2013","journal-title":"IEEE Trans. Signal Process."},{"key":"10.1016\/j.knosys.2021.107335_b37","series-title":"2019 27th European Signal Processing Conference, EUSIPCO","article-title":"A novel compressive sensing scheme under the variational Bayesian framework","author":"Oikonomou","year":"2019"},{"year":"2016","series-title":"Variational Bayesian inference for hidden Markov models with multivariate Gaussian output distributions","author":"Gruhl","key":"10.1016\/j.knosys.2021.107335_b38"},{"year":"2020","series-title":"Variational conditional-dependence hidden Markov models for human action recognition","author":"Panousis","key":"10.1016\/j.knosys.2021.107335_b39"},{"year":"2018","series-title":"Reinforcement learning and control as probabilistic inference: Tutorial and review","author":"Levine","key":"10.1016\/j.knosys.2021.107335_b40"},{"key":"10.1016\/j.knosys.2021.107335_b41","doi-asserted-by":"crossref","first-page":"24","DOI":"10.1016\/j.jbi.2014.03.016","article-title":"Identifying and mitigating biases in EHR laboratory tests","volume":"51","author":"Pivovarov","year":"2014","journal-title":"J. Biomed. Inform."},{"key":"10.1016\/j.knosys.2021.107335_b42","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.artmed.2016.07.004","article-title":"Survival analysis for high-dimensional, heterogeneous medical data: Exploring feature extraction as an alternative to feature selection","volume":"72","author":"P\u00f6lsterl","year":"2016","journal-title":"Artif. Intell. Med."},{"issue":"1","key":"10.1016\/j.knosys.2021.107335_b43","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1002\/int.21825","article-title":"Generalized likelihood ratio test and Cox\u2019s F-test based on fuzzy lifetime data","volume":"32","author":"Shafiq","year":"2017","journal-title":"Int. J. Intell. Syst."},{"year":"2003","series-title":"Survival Analysis: Techniques for Censored and Truncated Data","author":"Klein","key":"10.1016\/j.knosys.2021.107335_b44"},{"year":"2016","series-title":"Modeling Discrete Time-To-Event Data","author":"Tutz","key":"10.1016\/j.knosys.2021.107335_b45"},{"issue":"282","key":"10.1016\/j.knosys.2021.107335_b46","doi-asserted-by":"crossref","first-page":"457","DOI":"10.1080\/01621459.1958.10501452","article-title":"Nonparametric estimation from incomplete observations","volume":"53","author":"Kaplan","year":"1958","journal-title":"J. Amer. Statist. Assoc."},{"issue":"2","key":"10.1016\/j.knosys.2021.107335_b47","doi-asserted-by":"crossref","first-page":"243","DOI":"10.1016\/S0167-9473(99)00098-5","article-title":"Comparison of the performance of neural network methods and Cox regression for censored survival data","volume":"34","author":"Xiang","year":"2000","journal-title":"Comput. Statist. Data Anal."},{"key":"10.1016\/j.knosys.2021.107335_b48","first-page":"101","article-title":"Deep survival analysis","volume":"vol. 56","author":"Ranganath","year":"2016"},{"issue":"518","key":"10.1016\/j.knosys.2021.107335_b49","doi-asserted-by":"crossref","first-page":"859","DOI":"10.1080\/01621459.2017.1285773","article-title":"Variational inference: A review for statisticians","volume":"112","author":"Blei","year":"2017","journal-title":"J. Amer. Statist. Assoc."},{"issue":"1","key":"10.1016\/j.knosys.2021.107335_b50","first-page":"1303","article-title":"Stochastic variational inference","volume":"14","author":"Hoffman","year":"2013","journal-title":"J. Mach. Learn. Res."},{"year":"2013","series-title":"Black box variational inference","author":"Ranganath","key":"10.1016\/j.knosys.2021.107335_b51"},{"year":"2016","series-title":"Automatic differentiation variational inference","author":"Kucukelbir","key":"10.1016\/j.knosys.2021.107335_b52"},{"key":"10.1016\/j.knosys.2021.107335_b53","series-title":"3rd International Conference for Learning Representations, May 7\u20139, 2015, San Diego","article-title":"Adam: A method for stochastic optimization","author":"Kingma","year":"2014"},{"key":"10.1016\/j.knosys.2021.107335_b54","series-title":"International Conference on Learning Representations","article-title":"On the convergence of Adam and beyond","author":"Reddi","year":"2018"},{"key":"10.1016\/j.knosys.2021.107335_b55","series-title":"Advances in Neural Information Processing Systems, vol. 32","first-page":"8024","article-title":"Pytorch: An imperative style, high-performance deep learning library","author":"Paszke","year":"2019"},{"issue":"28","key":"10.1016\/j.knosys.2021.107335_b56","first-page":"1","article-title":"Pyro: Deep universal probabilistic programming","volume":"20","author":"Bingham","year":"2019","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.knosys.2021.107335_b57","series-title":"Sixth International Conference on Learning Representations ICLR","article-title":"Deep neural networks as Gaussian processes","author":"Lee","year":"2018"},{"year":"2006","series-title":"Pattern Recognition and Machine Learning","author":"Bishop","key":"10.1016\/j.knosys.2021.107335_b58"},{"year":"2009","series-title":"Probabilistic Graphical Models: Principles and Techniques","author":"Koller","key":"10.1016\/j.knosys.2021.107335_b59"},{"year":"2008","series-title":"Gates: A Graphical Notation for Mixture Models","author":"Minka","key":"10.1016\/j.knosys.2021.107335_b60"},{"year":"2013","series-title":"Automated variational inference in probabilistic programming","author":"Wingate","key":"10.1016\/j.knosys.2021.107335_b61"},{"issue":"56","key":"10.1016\/j.knosys.2021.107335_b62","first-page":"1929","article-title":"Dropout: A simple way to prevent neural networks from overfitting","volume":"15","author":"Srivastava","year":"2014","journal-title":"J. Mach. Learn. Res."},{"year":"2018","series-title":"A disciplined approach to neural network hyper-parameters: Part 1 \u2013 learning rate, batch size, momentum, and weight decay","author":"Smith","key":"10.1016\/j.knosys.2021.107335_b63"},{"key":"10.1016\/j.knosys.2021.107335_b64","series-title":"2017 IEEE Winter Conference on Applications of Computer Vision, WACV","first-page":"464","article-title":"Cyclical learning rates for training neural networks","author":"Smith","year":"2017"},{"year":"2015","series-title":"Automatic variational inference in stan","author":"Kucukelbir","key":"10.1016\/j.knosys.2021.107335_b65"},{"key":"10.1016\/j.knosys.2021.107335_b66","first-page":"814","article-title":"Black box variational inference","volume":"vol. 33","author":"Ranganath","year":"2014"},{"year":"2020","series-title":"Robust, accurate stochastic optimization for variational inference","author":"Dhaka","key":"10.1016\/j.knosys.2021.107335_b67"},{"year":"2020","series-title":"Poslovni na\u010drt za leto 2020 Zavoda Republike Slovenije za zaposlovanje","key":"10.1016\/j.knosys.2021.107335_b68"},{"year":"2015","series-title":"Dolgotrajno brezposelne osebe","key":"10.1016\/j.knosys.2021.107335_b69"},{"key":"10.1016\/j.knosys.2021.107335_b70","series-title":"OECD Social, Employment and Migration Working Papers","article-title":"Statistical profiling in public employment services: an international comparison","author":"Desiere","year":"2019"},{"key":"10.1016\/j.knosys.2021.107335_b71","series-title":"European Commission \u2013 ESF Transnational Cooperation. Technical Dossier No. 6, May 2018","article-title":"Tackling long-term unemployment through risk profiling and outreach. a discussion paper from the employment thematic network","author":"Scoppetta","year":"2018"},{"key":"10.1016\/j.knosys.2021.107335_b72","doi-asserted-by":"crossref","first-page":"453","DOI":"10.1016\/j.econmod.2013.07.038","article-title":"AustraliaN labor market dynamics across the ages","volume":"35","author":"Ponomareva","year":"2013","journal-title":"Econ. Model."},{"year":"2018","series-title":"Implementation Completion and Results Report 8426-HR","author":"Pojarski","key":"10.1016\/j.knosys.2021.107335_b73"},{"key":"10.1016\/j.knosys.2021.107335_b74","doi-asserted-by":"crossref","unstructured":"M. Rosholm, M. Svarer, B. Hammer, A Danish Profiling System (November 25, 2004). Univ. of Aarhus Economics Working Paper No. 2004-13, Discussion Paper Series, Aarhus University Economics Department, 2004, http:\/\/dx.doi.org\/10.2139\/ssrn.1147586.","DOI":"10.2139\/ssrn.1147586"},{"year":"2014","series-title":"Youth Unemployment and the Skills Mismatch in Denmark","author":"Madsen","key":"10.1016\/j.knosys.2021.107335_b75"},{"year":"2011","series-title":"Employability Profiling System \u2013 The Danish Experience, Presentation at PES","author":"Larsen","key":"10.1016\/j.knosys.2021.107335_b76"},{"key":"10.1016\/j.knosys.2021.107335_b77","unstructured":"J. Obben, Towards a Formal Profiling Model To Foster Active Labour Market Policies in New Zealand, Discussion paper (Massey University. Department of Applied and International Economics) no. 02.07, Dept. of Applied and International Economics, Massey University, Palmerston North, N.Z., 2002, URL: http:\/\/citeseerx.ist.psu.edu\/viewdoc\/download?doi=10.1.1.195.2652&rep=rep1&type=pdf."},{"first-page":"L 119\/1","year":"2016","author":"Council\u00a0of European\u00a0Union","key":"10.1016\/j.knosys.2021.107335_b78"}],"container-title":["Knowledge-Based Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0950705121005979?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0950705121005979?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,9,4]],"date-time":"2024-09-04T23:29:14Z","timestamp":1725492554000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0950705121005979"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,10]]},"references-count":78,"alternative-id":["S0950705121005979"],"URL":"https:\/\/doi.org\/10.1016\/j.knosys.2021.107335","relation":{},"ISSN":["0950-7051"],"issn-type":[{"type":"print","value":"0950-7051"}],"subject":[],"published":{"date-parts":[[2021,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Variational Bayes survival analysis for unemployment modelling","name":"articletitle","label":"Article Title"},{"value":"Knowledge-Based Systems","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.knosys.2021.107335","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 The Author(s). Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"107335"}}