{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,20]],"date-time":"2024-09-20T16:46:54Z","timestamp":1726850814623},"reference-count":40,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,7,1]],"date-time":"2021-07-01T00:00:00Z","timestamp":1625097600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,7,1]],"date-time":"2021-07-01T00:00:00Z","timestamp":1625097600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2021,7,1]],"date-time":"2021-07-01T00:00:00Z","timestamp":1625097600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2021,7,1]],"date-time":"2021-07-01T00:00:00Z","timestamp":1625097600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2021,7,1]],"date-time":"2021-07-01T00:00:00Z","timestamp":1625097600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,7,1]],"date-time":"2021-07-01T00:00:00Z","timestamp":1625097600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Knowledge-Based Systems"],"published-print":{"date-parts":[[2021,7]]},"DOI":"10.1016\/j.knosys.2021.107050","type":"journal-article","created":{"date-parts":[[2021,4,24]],"date-time":"2021-04-24T06:43:15Z","timestamp":1619246595000},"page":"107050","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":17,"special_numbering":"C","title":["Adaptive priority-based data placement and multi-task scheduling in geo-distributed cloud systems"],"prefix":"10.1016","volume":"224","author":[{"given":"Chunlin","family":"Li","sequence":"first","affiliation":[]},{"given":"Jun","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Weigang","family":"Li","sequence":"additional","affiliation":[]},{"given":"Youlong","family":"Luo","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.knosys.2021.107050_b1","doi-asserted-by":"crossref","unstructured":"M. Nardelli, V. Cardellini, E. Casalicchio, Multi-level Elastic Deployment of Containerized Applications in Geo-distributed Environments, in: 2018 IEEE 6th International Conference on Future Internet of Things and Cloud, Spain, 2018, pp. 1-8.","DOI":"10.1109\/FiCloud.2018.00009"},{"issue":"4","key":"10.1016\/j.knosys.2021.107050_b2","doi-asserted-by":"crossref","first-page":"749","DOI":"10.1109\/TPDS.2019.2943457","article-title":"Power-aware allocation of graph jobs in geo-distributed cloud networks","volume":"31","author":"Hosseinalipour","year":"2020","journal-title":"IEEE Trans. Parallel Distrib. Syst."},{"issue":"1","key":"10.1016\/j.knosys.2021.107050_b3","doi-asserted-by":"crossref","first-page":"73","DOI":"10.1109\/TCC.2017.2739160","article-title":"Bulk savings for bulk transfers: Minimizing the energy-cost for geo-distributed data centers","volume":"8","author":"Lu","year":"2020","journal-title":"IEEE Trans. Cloud Comput."},{"key":"10.1016\/j.knosys.2021.107050_b4","doi-asserted-by":"crossref","first-page":"321","DOI":"10.1016\/j.knosys.2018.12.002","article-title":"Data locality optimization based on data migration and hotspots prediction in geo-distributed cloud environment","volume":"165","author":"Li","year":"2019","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.knosys.2021.107050_b5","doi-asserted-by":"crossref","first-page":"33","DOI":"10.1016\/j.ins.2019.12.049","article-title":"Resource and replica management strategy for optimizing financial cost and user experience in edge cloud computing system","volume":"516","author":"Li","year":"2020","journal-title":"Inform. Sci."},{"key":"10.1016\/j.knosys.2021.107050_b6","doi-asserted-by":"crossref","DOI":"10.1016\/j.comnet.2020.107096","article-title":"An effective scheduling strategy based on hypergraph partition in geographically distributed datacenters","volume":"170","author":"Li","year":"2020","journal-title":"Comput. Netw."},{"issue":"8","key":"10.1016\/j.knosys.2021.107050_b7","doi-asserted-by":"crossref","first-page":"1753","DOI":"10.1109\/TPDS.2019.2896115","article-title":"Efficient operator placement for distributed data stream processing applications","volume":"30","author":"Nardelli","year":"2019","journal-title":"IEEE Trans. Parallel Distrib. Syst."},{"issue":"1","key":"10.1016\/j.knosys.2021.107050_b8","doi-asserted-by":"crossref","first-page":"60","DOI":"10.1109\/TBDATA.2017.2723473","article-title":"A survey on geographically distributed big-data processing using mapreduce","volume":"5","author":"Dolev","year":"2019","journal-title":"IEEE Trans. Big Data"},{"key":"10.1016\/j.knosys.2021.107050_b9","doi-asserted-by":"crossref","unstructured":"G. Janssen, I. Verbitskiy, T. Renner, et al. Scheduling Stream Processing Tasks on Geo-Distributed Heterogeneous Resources, in: 2018 IEEE International Conference on Big Data, Washington, 2018, pp. 5159-5164.","DOI":"10.1109\/BigData.2018.8622651"},{"key":"10.1016\/j.knosys.2021.107050_b10","doi-asserted-by":"crossref","unstructured":"H.T. Yuan, J. Bi, M.C. Zhou, Spatio-Temporal Scheduling of Heterogeneous Delay-Constrained Tasks in Geo-Distributed Green Clouds, in: Proceedings of The 2019 IEEE 16th International Conference on Networking, Sensing and Control, Canada, 2019, pp. 287-292.","DOI":"10.1109\/ICNSC.2019.8743294"},{"key":"10.1016\/j.knosys.2021.107050_b11","doi-asserted-by":"crossref","DOI":"10.1109\/ACCESS.2019.2932477","article-title":"Topology-aware resource-efficient placement for high availability clusters over geo-distributed cloud infrastructure","volume":"7","author":"Do","year":"2019","journal-title":"IEEE Access"},{"issue":"1","key":"10.1016\/j.knosys.2021.107050_b12","doi-asserted-by":"crossref","first-page":"21","DOI":"10.1007\/s00607-017-0564-7","article-title":"GEODIS: towards the optimization of data locality-aware job scheduling in geo-distributed data centers","volume":"100","author":"Convolbo","year":"2018","journal-title":"Computing"},{"issue":"7","key":"10.1016\/j.knosys.2021.107050_b13","doi-asserted-by":"crossref","first-page":"1575","DOI":"10.1109\/TPDS.2020.2968321","article-title":"Scalable and adaptive data replica placement for geo-distributed cloud storages","volume":"31","author":"Liu","year":"2020","journal-title":"IEEE Trans. Parallel Distrib. Syst."},{"key":"10.1016\/j.knosys.2021.107050_b14","series-title":"Advancing throughput of HEP analysis work-flows using caching concepts","first-page":"214","author":"Caspart","year":"2019"},{"issue":"516","key":"10.1016\/j.knosys.2021.107050_b15","doi-asserted-by":"crossref","first-page":"33","DOI":"10.1016\/j.ins.2019.12.049","article-title":"Resource and replica management strategy for optimizing financial cost and user experience in edge cloud computing system","author":"Li","year":"2020","journal-title":"Inform. Sci."},{"key":"10.1016\/j.knosys.2021.107050_b16","doi-asserted-by":"crossref","unstructured":"Rahma\u00a0Souli Jbali, Minyar\u00a0Sassi Hidri, Rahma Ben-Ayed, Dynamic-Based Clustering for Replica Placement in Data Grids, 10 (4) (2019) 58-80.","DOI":"10.4018\/IJSSMET.2019100104"},{"key":"10.1016\/j.knosys.2021.107050_b17","doi-asserted-by":"crossref","first-page":"153","DOI":"10.1016\/j.ins.2020.09.016","article-title":"Mobility and marginal gain based content caching and placement for cooperative edge-cloud computing","volume":"548","author":"Li","year":"2021","journal-title":"Inform. Sci."},{"key":"10.1016\/j.knosys.2021.107050_b18","doi-asserted-by":"crossref","first-page":"7723","DOI":"10.1007\/s11227-019-02973-9","article-title":"Locality-aware process placement for parallel and distributed simulation in cloud data centers","volume":"75","author":"Zaheer","year":"2019","journal-title":"Supercomput"},{"key":"10.1016\/j.knosys.2021.107050_b19","first-page":"279","article-title":"The placement method of resources and applications based on request prediction in cloud data center","author":"Liang","year":"2014","journal-title":"Inform. Sci."},{"issue":"2","key":"10.1016\/j.knosys.2021.107050_b20","doi-asserted-by":"crossref","first-page":"279","DOI":"10.1109\/TPDS.2019.2938164","article-title":"Optimizing geo-distributed data analytics with coordinated task scheduling and routing","volume":"31","author":"Zhao","year":"2020","journal-title":"IEEE Trans. Parallel Distrib. Syst."},{"key":"10.1016\/j.knosys.2021.107050_b21","series-title":"Data allocation service ADAS for the data rebalancing of ATLAS","first-page":"214","author":"Vamosi","year":"2019"},{"key":"10.1016\/j.knosys.2021.107050_b22","first-page":"159","article-title":"FCA-based energy aware-data placement strategy for intensive workflow in cloud computing","author":"Derouiche","year":"2019","journal-title":"Procedia Comput. Sci."},{"issue":"170","key":"10.1016\/j.knosys.2021.107050_b23","article-title":"An effective scheduling strategy based on hypergraph partition in geographically distributed datacenters","author":"Li","year":"2020","journal-title":"Comput. Netw."},{"issue":"4","key":"10.1016\/j.knosys.2021.107050_b24","doi-asserted-by":"crossref","first-page":"1260","DOI":"10.1109\/TSMC.2017.2747146","article-title":"Modeling and analyzing dynamic fault-tolerant strategy for deadline constrained task scheduling in cloud computing","volume":"50","author":"Fan","year":"2020","journal-title":"IEEE Trans. Syst. Man Cybern. Syst."},{"key":"10.1016\/j.knosys.2021.107050_b25","first-page":"14","article-title":"An efficient fault tolerant workflow scheduling approach using replication heuristics and checkpointing in the cloud","author":"Nirmala","year":"2020","journal-title":"J. Parallel Distrib. Comput."},{"issue":"10","key":"10.1016\/j.knosys.2021.107050_b26","doi-asserted-by":"crossref","first-page":"6777","DOI":"10.1007\/s11227-019-02916-4","article-title":"SLA-RALBA: cost-efficient and resource-aware load balancing algorithm for cloud computing","volume":"75","author":"Hussain","year":"2019","journal-title":"J. Supercomput."},{"issue":"8","key":"10.1016\/j.knosys.2021.107050_b27","doi-asserted-by":"crossref","first-page":"4472","DOI":"10.1007\/s11227-019-02745-5","article-title":"Adaptive fault-tolerant scheduling strategies for mobile cloud computing","volume":"75","author":"Lee","year":"2019","journal-title":"J. Supercomput."},{"issue":"3","key":"10.1016\/j.knosys.2021.107050_b28","doi-asserted-by":"crossref","first-page":"1063","DOI":"10.1007\/s11036-018-1062-7","article-title":"Energy-aware fault-tolerant dynamic task scheduling scheme for virtualized cloud data centers","volume":"24","author":"Marahatta","year":"2019","journal-title":"Mobile Netw. Appl."},{"key":"10.1016\/j.knosys.2021.107050_b29","doi-asserted-by":"crossref","first-page":"30","DOI":"10.1016\/j.ins.2018.10.020","article-title":"DEFT: Dynamic fault-tolerant elastic scheduling for tasks with uncertain runtime in cloud","volume":"477","author":"Yan","year":"2019","journal-title":"Inform. Sci."},{"issue":"4","key":"10.1016\/j.knosys.2021.107050_b30","doi-asserted-by":"crossref","first-page":"3335","DOI":"10.1016\/j.asej.2017.11.006","article-title":"Improving the dependability of cloud environment for hosting real time applications","volume":"9","author":"Abohamama","year":"2018","journal-title":"Ain Shams Eng. J."},{"key":"10.1016\/j.knosys.2021.107050_b31","doi-asserted-by":"crossref","first-page":"109","DOI":"10.1016\/j.jnca.2018.04.001","article-title":"Fault tolerant storage and data access optimization in data center networks","volume":"113","author":"Qin","year":"2018","journal-title":"J. Netw. Comput. Appl."},{"issue":"8","key":"10.1016\/j.knosys.2021.107050_b32","doi-asserted-by":"crossref","first-page":"10171","DOI":"10.1007\/s11042-017-5304-7","article-title":"Cost and fault-tolerant aware resource management for scientific workflows using hybrid instances on clouds","volume":"77","author":"Vinay","year":"2018","journal-title":"Multimedia Tools Appl."},{"key":"10.1016\/j.knosys.2021.107050_b33","doi-asserted-by":"crossref","first-page":"53671","DOI":"10.1109\/ACCESS.2018.2871821","article-title":"Energy-efficient fault-tolerant scheduling algorithm for real-time tasks in cloud-based 5G networks","volume":"6","author":"Guo","year":"2018","journal-title":"IEEE Access"},{"key":"10.1016\/j.knosys.2021.107050_b34","doi-asserted-by":"crossref","first-page":"107","DOI":"10.1016\/j.jpdc.2020.04.012","article-title":"Effective replica management for improving reliability and availability in edge-cloud computing environment","volume":"143","author":"Li","year":"2020","journal-title":"J. Parallel Distrib. Comput."},{"key":"10.1016\/j.knosys.2021.107050_b35","first-page":"1","article-title":"Investigating the performance of hadoop and spark platforms on machine learning algorithms","author":"Mostafaeipour","year":"2020","journal-title":"J. Supercomput."},{"key":"10.1016\/j.knosys.2021.107050_b36","first-page":"185","article-title":"Effective straggler mitigation: attack of the clones","author":"Ananthanarayanan","year":"2013","journal-title":"Netw. Syst. Des. Implement."},{"key":"10.1016\/j.knosys.2021.107050_b37","first-page":"142","article-title":"SpeCH: A scalable framework for data placement of data-intensive services in geo-distributed clouds","author":"Atrey","year":"2019","journal-title":"J. Netw. Comput. Appl."},{"key":"10.1016\/j.knosys.2021.107050_b38","series-title":"2018 IEEE Fourth International Conference on Big Data Computing Service and Applications (BigDataService)","article-title":"Performance characterization of spark workloads on shared NUMA systems","author":"Baig","year":"2018"},{"key":"10.1016\/j.knosys.2021.107050_b39","doi-asserted-by":"crossref","unstructured":"A. Kuzmanovska, H.v.D. Bogert, R. Mak, D. Epema, Achieving Performance Balance Among Spark Frameworks with Two-Level Schedulers, in: 2018 18th IEEE\/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID), Washington, DC, 2018, pp. 133-142, http:\/\/dx.doi.org\/10.1109\/CCGRID.2018.00028.","DOI":"10.1109\/CCGRID.2018.00028"},{"key":"10.1016\/j.knosys.2021.107050_b40","article-title":"Design and implementation of an analytical framework for interference aware job scheduling on Apache Spark platform","author":"Wang","year":"2017","journal-title":"Cluster Comput."}],"container-title":["Knowledge-Based Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0950705121003130?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0950705121003130?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,3,11]],"date-time":"2023-03-11T14:28:02Z","timestamp":1678544882000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0950705121003130"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,7]]},"references-count":40,"alternative-id":["S0950705121003130"],"URL":"https:\/\/doi.org\/10.1016\/j.knosys.2021.107050","relation":{},"ISSN":["0950-7051"],"issn-type":[{"value":"0950-7051","type":"print"}],"subject":[],"published":{"date-parts":[[2021,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Adaptive priority-based data placement and multi-task scheduling in geo-distributed cloud systems","name":"articletitle","label":"Article Title"},{"value":"Knowledge-Based Systems","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.knosys.2021.107050","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"107050"}}