{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,14]],"date-time":"2025-04-14T21:53:14Z","timestamp":1744667594002,"version":"3.37.3"},"reference-count":79,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,3,1]],"date-time":"2021-03-01T00:00:00Z","timestamp":1614556800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,3,1]],"date-time":"2021-03-01T00:00:00Z","timestamp":1614556800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2021,3,1]],"date-time":"2021-03-01T00:00:00Z","timestamp":1614556800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2021,3,1]],"date-time":"2021-03-01T00:00:00Z","timestamp":1614556800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2021,3,1]],"date-time":"2021-03-01T00:00:00Z","timestamp":1614556800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,3,1]],"date-time":"2021-03-01T00:00:00Z","timestamp":1614556800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100009334","name":"Pearl River S and T Nova Program of Guangzhou","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100009334","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Knowledge-Based Systems"],"published-print":{"date-parts":[[2021,3]]},"DOI":"10.1016\/j.knosys.2021.106773","type":"journal-article","created":{"date-parts":[[2021,1,15]],"date-time":"2021-01-15T00:49:47Z","timestamp":1610671787000},"page":"106773","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":31,"special_numbering":"C","title":["Joint Visual and Semantic Optimization for zero-shot learning"],"prefix":"10.1016","volume":"215","author":[{"ORCID":"https:\/\/orcid.org\/0000-0003-3565-6635","authenticated-orcid":false,"given":"Hanrui","family":"Wu","sequence":"first","affiliation":[]},{"given":"Yuguang","family":"Yan","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-3692-0728","authenticated-orcid":false,"given":"Sentao","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Xiangkang","family":"Huang","sequence":"additional","affiliation":[]},{"given":"Qingyao","family":"Wu","sequence":"additional","affiliation":[]},{"given":"Michael K.","family":"Ng","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.knosys.2021.106773_b1","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"248","article-title":"Imagenet: A large-scale hierarchical image database","author":"Deng","year":"2009"},{"key":"10.1016\/j.knosys.2021.106773_b2","series-title":"Advances in Neural Information Processing Systems","first-page":"1410","article-title":"Zero-shot learning with semantic output codes","author":"Palatucci","year":"2009"},{"key":"10.1016\/j.knosys.2021.106773_b3","series-title":"Advances in Neural Information Processing Systems","first-page":"935","article-title":"Zero-shot learning through cross-modal transfer","author":"Socher","year":"2013"},{"issue":"2","key":"10.1016\/j.knosys.2021.106773_b4","first-page":"13","article-title":"A survey of zero-shot learning: Settings, methods, and applications","volume":"10","author":"Wang","year":"2019","journal-title":"ACM Trans. Intell. Syst. Technol. (TIST)"},{"issue":"10","key":"10.1016\/j.knosys.2021.106773_b5","doi-asserted-by":"crossref","first-page":"3755","DOI":"10.1109\/TCYB.2018.2850750","article-title":"Zero-shot learning via latent space encoding","volume":"49","author":"Yu","year":"2019","journal-title":"IEEE Trans. Cybern."},{"issue":"7","key":"10.1016\/j.knosys.2021.106773_b6","doi-asserted-by":"crossref","first-page":"4157","DOI":"10.1109\/TGRS.2017.2689071","article-title":"Zero-shot scene classification for high spatial resolution remote sensing images","volume":"55","author":"Li","year":"2017","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.knosys.2021.106773_b7","doi-asserted-by":"crossref","unstructured":"X. Song, H. Zeng, S. Zhang, L. Herranz, S. Jiang, Generalized zero-shot learning with multi-source semantic embeddings for scene recognition, in: Proceedings of the 28th ACM International Conference on Multimedia, 2020, pp. 3976\u20133985.","DOI":"10.1145\/3394171.3413568"},{"year":"2013","series-title":"Zero-shot learning by convex combination of semantic embeddings","author":"Norouzi","key":"10.1016\/j.knosys.2021.106773_b8"},{"key":"10.1016\/j.knosys.2021.106773_b9","doi-asserted-by":"crossref","unstructured":"E. Kodirov, T. Xiang, S. Gong, Semantic autoencoder for zero-shot learning, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 3174\u20133183.","DOI":"10.1109\/CVPR.2017.473"},{"key":"10.1016\/j.knosys.2021.106773_b10","doi-asserted-by":"crossref","unstructured":"L. Zhang, T. Xiang, S. Gong, Learning a deep embedding model for zero-shot learning, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2021\u20132030.","DOI":"10.1109\/CVPR.2017.321"},{"key":"10.1016\/j.knosys.2021.106773_b11","doi-asserted-by":"crossref","unstructured":"B. Demirel, R. Gokberk\u00a0Cinbis, N. Ikizler-Cinbis, Attributes2classname: A discriminative model for attribute-based unsupervised zero-shot learning, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 1232\u20131241.","DOI":"10.1109\/ICCV.2017.139"},{"key":"10.1016\/j.knosys.2021.106773_b12","doi-asserted-by":"crossref","unstructured":"Z. Ding, M. Shao, Y. Fu, Low-rank embedded ensemble semantic dictionary for zero-shot learning, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2050\u20132058.","DOI":"10.1109\/CVPR.2017.636"},{"year":"2014","series-title":"Improving zero-shot learning by mitigating the hubness problem","author":"Dinu","key":"10.1016\/j.knosys.2021.106773_b13"},{"issue":"11","key":"10.1016\/j.knosys.2021.106773_b14","doi-asserted-by":"crossref","first-page":"2332","DOI":"10.1109\/TPAMI.2015.2408354","article-title":"Transductive multi-view zero-shot learning","volume":"37","author":"Fu","year":"2015","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"1","key":"10.1016\/j.knosys.2021.106773_b15","doi-asserted-by":"crossref","first-page":"141","DOI":"10.1093\/imanum\/8.1.141","article-title":"Two-point step size gradient methods","volume":"8","author":"Barzilai","year":"1988","journal-title":"IMA J. Numer. Anal."},{"key":"10.1016\/j.knosys.2021.106773_b16","article-title":"Zero-shot learning-a comprehensive evaluation of the good, the bad and the ugly","author":"Xian","year":"2018","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.knosys.2021.106773_b17","doi-asserted-by":"crossref","unstructured":"B. Zhao, Y. Fu, R. Liang, J. Wu, Y. Wang, Y. Wang, A large-scale attribute dataset for zero-shot learning, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2019.","DOI":"10.1109\/CVPRW.2019.00053"},{"issue":"10","key":"10.1016\/j.knosys.2021.106773_b18","doi-asserted-by":"crossref","first-page":"2908","DOI":"10.1109\/TCYB.2017.2751741","article-title":"Transductive zero-shot learning with a self-training dictionary approach","volume":"48","author":"Yu","year":"2018","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.knosys.2021.106773_b19","article-title":"A joint label space for generalized zero-shot classification","author":"Li","year":"2020","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.knosys.2021.106773_b20","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2020.106378","article-title":"Learning domain invariant unseen features for generalized zero-shot classification","volume":"206","author":"Li","year":"2020","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.knosys.2021.106773_b21","doi-asserted-by":"crossref","first-page":"167","DOI":"10.1016\/j.neucom.2019.11.011","article-title":"Towards zero-shot learning generalization via a cosine distance loss","volume":"381","author":"Pan","year":"2020","journal-title":"Neurocomputing"},{"key":"10.1016\/j.knosys.2021.106773_b22","unstructured":"H. Larochelle, D. Erhan, Y. Bengio, Zero-data learning of new tasks, in: Proceedings of the 23rd Association for the Advancement of Artificial Intelligence, vol. 1, no. 2, 2008, p. 3."},{"key":"10.1016\/j.knosys.2021.106773_b23","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"951","article-title":"Learning to detect unseen object classes by between-class attribute transfer","author":"Lampert","year":"2009"},{"issue":"3","key":"10.1016\/j.knosys.2021.106773_b24","doi-asserted-by":"crossref","first-page":"453","DOI":"10.1109\/TPAMI.2013.140","article-title":"Attribute-based classification for zero-shot visual object categorization","volume":"36","author":"Lampert","year":"2013","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.knosys.2021.106773_b25","doi-asserted-by":"crossref","unstructured":"Z. Al-Halah, M. Tapaswi, R. Stiefelhagen, Recovering the missing link: Predicting class-attribute associations for unsupervised zero-shot learning, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 5975\u20135984.","DOI":"10.1109\/CVPR.2016.643"},{"key":"10.1016\/j.knosys.2021.106773_b26","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"1778","article-title":"Describing objects by their attributes","author":"Farhadi","year":"2009"},{"key":"10.1016\/j.knosys.2021.106773_b27","series-title":"European Conference on Computer Vision","first-page":"730","article-title":"Improving semantic embedding consistency by metric learning for zero-shot classiffication","author":"Bucher","year":"2016"},{"key":"10.1016\/j.knosys.2021.106773_b28","article-title":"A novel perspective to zero-shot learning: Towards an alignment of manifold structures via semantic feature expansion","author":"Guo","year":"2020","journal-title":"IEEE Trans. Multimed."},{"key":"10.1016\/j.knosys.2021.106773_b29","series-title":"Joint European Conference on Machine Learning and Knowledge Discovery in Databases","first-page":"135","article-title":"Ridge regression, hubness, and zero-shot learning","author":"Shigeto","year":"2015"},{"key":"10.1016\/j.knosys.2021.106773_b30","doi-asserted-by":"crossref","unstructured":"J. Qin, L. Liu, L. Shao, F. Shen, B. Ni, J. Chen, Y. Wang, Zero-shot action recognition with error-correcting output codes, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2833\u20132842.","DOI":"10.1109\/CVPR.2017.117"},{"issue":"10","key":"10.1016\/j.knosys.2021.106773_b31","doi-asserted-by":"crossref","first-page":"1345","DOI":"10.1109\/TKDE.2009.191","article-title":"A survey on transfer learning","volume":"22","author":"Pan","year":"2010","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.knosys.2021.106773_b32","series-title":"2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition","first-page":"910","article-title":"What helps where\u2013and why? semantic relatedness for knowledge transfer","author":"Rohrbach","year":"2010"},{"key":"10.1016\/j.knosys.2021.106773_b33","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"1641","article-title":"Evaluating knowledge transfer and zero-shot learning in a large-scale setting","author":"Rohrbach","year":"2011"},{"key":"10.1016\/j.knosys.2021.106773_b34","series-title":"Advances in Neural Information Processing Systems","first-page":"46","article-title":"Transfer learning in a transductive setting","author":"Rohrbach","year":"2013"},{"key":"10.1016\/j.knosys.2021.106773_b35","doi-asserted-by":"crossref","unstructured":"E. Kodirov, T. Xiang, Z. Fu, S. Gong, Unsupervised domain adaptation for zero-shot learning, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 2452\u20132460.","DOI":"10.1109\/ICCV.2015.282"},{"key":"10.1016\/j.knosys.2021.106773_b36","doi-asserted-by":"crossref","unstructured":"H. Jiang, R. Wang, S. Shan, X. Chen, Learning class prototypes via structure alignment for zero-shot recognition, in: Proceedings of the European Conference on Computer Vision, 2018, pp. 118\u2013134.","DOI":"10.1007\/978-3-030-01249-6_8"},{"issue":"4","key":"10.1016\/j.knosys.2021.106773_b37","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3391229","article-title":"Domain-attention conditional wasserstein distance for multi-source domain adaptation","volume":"11","author":"Wu","year":"2020","journal-title":"ACM Trans. Intell. Syst. Technol. (TIST)"},{"key":"10.1016\/j.knosys.2021.106773_b38","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2019.105155","article-title":"Geometric knowledge embedding for unsupervised domain adaptation","volume":"191","author":"Wu","year":"2020","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.knosys.2021.106773_b39","article-title":"Iterative refinement for multi-source visual domain adaptation","author":"Wu","year":"2020","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.knosys.2021.106773_b40","doi-asserted-by":"crossref","unstructured":"Y. Yan, W. Li, M.K. Ng, M. Tan, H. Wu, H. Min, Q. Wu, Learning discriminative correlation subspace for heterogeneous domain adaptation, in: International Joint Conference on Artificial Intelligence, 2017, pp. 3252\u20133258.","DOI":"10.24963\/ijcai.2017\/454"},{"issue":"7","key":"10.1016\/j.knosys.2021.106773_b41","doi-asserted-by":"crossref","first-page":"1494","DOI":"10.1109\/TKDE.2017.2685597","article-title":"Online transfer learning with multiple homogeneous or heterogeneous sources","volume":"29","author":"Wu","year":"2017","journal-title":"IEEE Trans. Knowl. Data Eng."},{"issue":"3","key":"10.1016\/j.knosys.2021.106773_b42","doi-asserted-by":"crossref","first-page":"687","DOI":"10.1007\/s10115-016-1021-1","article-title":"Online transfer learning by leveraging multiple source domains","volume":"52","author":"Wu","year":"2017","journal-title":"Knowl. Inf. Syst."},{"key":"10.1016\/j.knosys.2021.106773_b43","doi-asserted-by":"crossref","unstructured":"Y. Yan, W. Li, H. Wu, H. Min, M. Tan, Q. Wu, Semi-supervised optimal transport for heterogeneous domain adaptation, in: International Joint Conference on Artificial Intelligence, 2018, pp. 2969\u20132975.","DOI":"10.24963\/ijcai.2018\/412"},{"issue":"12","key":"10.1016\/j.knosys.2021.106773_b44","doi-asserted-by":"crossref","first-page":"6103","DOI":"10.1109\/TIP.2019.2924174","article-title":"Locality preserving joint transfer for domain adaptation","volume":"28","author":"Li","year":"2019","journal-title":"IEEE Trans. Image Process."},{"issue":"3","key":"10.1016\/j.knosys.2021.106773_b45","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3309537","article-title":"Online heterogeneous transfer learning by knowledge transition","volume":"10","author":"Wu","year":"2019","journal-title":"ACM Trans. Intell. Syst. Technol. (TIST)"},{"issue":"3","key":"10.1016\/j.knosys.2021.106773_b46","doi-asserted-by":"crossref","first-page":"984","DOI":"10.1109\/TNNLS.2019.2913723","article-title":"Heterogeneous domain adaptation via nonlinear matrix factorization","volume":"31","author":"Li","year":"2020","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"1","key":"10.1016\/j.knosys.2021.106773_b47","first-page":"3760","article-title":"Distribution-matching embedding for visual domain adaptation","volume":"17","author":"Baktashmotlagh","year":"2016","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.knosys.2021.106773_b48","unstructured":"M. Gong, K. Zhang, T. Liu, D. Tao, C. Glymour, B. Sch\u00f6lkopf, Domain adaptation with conditional transferable components, in: International Conference on Machine Learning, 2016, pp. 2839\u20132848."},{"key":"10.1016\/j.knosys.2021.106773_b49","doi-asserted-by":"crossref","first-page":"8264","DOI":"10.1109\/TIP.2020.3013167","article-title":"Domain adaptation by joint distribution invariant projections","volume":"29","author":"Chen","year":"2020","journal-title":"IEEE Trans. Image Process."},{"issue":"1\u20132","key":"10.1016\/j.knosys.2021.106773_b50","doi-asserted-by":"crossref","first-page":"459","DOI":"10.1007\/s10107-013-0701-9","article-title":"Proximal alternating linearized minimization for nonconvex and nonsmooth problems","volume":"146","author":"Bolte","year":"2014","journal-title":"Math. Program."},{"year":"2009","series-title":"Optimization Algorithms on Matrix Manifolds","author":"Absil","key":"10.1016\/j.knosys.2021.106773_b51"},{"issue":"1\u20132","key":"10.1016\/j.knosys.2021.106773_b52","doi-asserted-by":"crossref","first-page":"397","DOI":"10.1007\/s10107-012-0584-1","article-title":"A feasible method for optimization with orthogonality constraints","volume":"142","author":"Wen","year":"2013","journal-title":"Math. Program."},{"issue":"1","key":"10.1016\/j.knosys.2021.106773_b53","doi-asserted-by":"crossref","first-page":"84","DOI":"10.1137\/080726926","article-title":"A curvilinear search method for p-harmonic flows on spheres","volume":"2","author":"Goldfarb","year":"2009","journal-title":"SIAM J. Imaging Sci."},{"year":"2006","series-title":"Numerical Optimization","author":"Nocedal","key":"10.1016\/j.knosys.2021.106773_b54"},{"year":"2013","series-title":"Practical Methods of Optimization","author":"Fletcher","key":"10.1016\/j.knosys.2021.106773_b55"},{"issue":"4","key":"10.1016\/j.knosys.2021.106773_b56","doi-asserted-by":"crossref","first-page":"1043","DOI":"10.1137\/S1052623403428208","article-title":"A nonmonotone line search technique and its application to unconstrained optimization","volume":"14","author":"Zhang","year":"2004","journal-title":"SIAM J. Optim."},{"issue":"1\u20132","key":"10.1016\/j.knosys.2021.106773_b57","doi-asserted-by":"crossref","first-page":"59","DOI":"10.1007\/s11263-013-0695-z","article-title":"The sun attribute database: Beyond categories for deeper scene understanding","volume":"108","author":"Patterson","year":"2014","journal-title":"Int. J. Comput. Vis."},{"year":"2010","series-title":"Caltech-UCSD Birds 200","author":"Welinder","key":"10.1016\/j.knosys.2021.106773_b58"},{"key":"10.1016\/j.knosys.2021.106773_b59","doi-asserted-by":"crossref","unstructured":"H. Jiang, R. Wang, S. Shan, Y. Yang, X. Chen, Learning discriminative latent attributes for zero-shot classification, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 4223\u20134232.","DOI":"10.1109\/ICCV.2017.453"},{"key":"10.1016\/j.knosys.2021.106773_b60","doi-asserted-by":"crossref","unstructured":"K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770\u2013778.","DOI":"10.1109\/CVPR.2016.90"},{"key":"10.1016\/j.knosys.2021.106773_b61","doi-asserted-by":"crossref","first-page":"1958","DOI":"10.1109\/TIP.2019.2947780","article-title":"Deep unbiased embedding transfer for zero-shot learning","volume":"29","author":"Jia","year":"2020","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.knosys.2021.106773_b62","series-title":"Advances in Neural Information Processing Systems","first-page":"2121","article-title":"Devise: A deep visual-semantic embedding model","author":"Frome","year":"2013"},{"key":"10.1016\/j.knosys.2021.106773_b63","doi-asserted-by":"crossref","unstructured":"L. Chen, H. Zhang, J. Xiao, W. Liu, S.-F. Chang, Zero-shot visual recognition using semantics-preserving adversarial embedding networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 1043\u20131052.","DOI":"10.1109\/CVPR.2018.00115"},{"key":"10.1016\/j.knosys.2021.106773_b64","unstructured":"J. Liu, X. Li, G. Yang, Cross-class sample synthesis for zero-shot learning, in: 30th British Machine Vision Conference, 2019, p. 113."},{"key":"10.1016\/j.knosys.2021.106773_b65","doi-asserted-by":"crossref","unstructured":"Z. Zhang, V. Saligrama, Zero-shot learning via semantic similarity embedding, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 4166\u20134174.","DOI":"10.1109\/ICCV.2015.474"},{"key":"10.1016\/j.knosys.2021.106773_b66","doi-asserted-by":"crossref","unstructured":"Z. Akata, S. Reed, D. Walter, H. Lee, B. Schiele, Evaluation of output embeddings for fine-grained image classification, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 2927\u20132936.","DOI":"10.1109\/CVPR.2015.7298911"},{"key":"10.1016\/j.knosys.2021.106773_b67","unstructured":"B. Romera-Paredes, P. Torr, An embarrassingly simple approach to zero-shot learning, in: International Conference on Machine Learning, 2015, pp. 2152\u20132161."},{"key":"10.1016\/j.knosys.2021.106773_b68","doi-asserted-by":"crossref","unstructured":"Y. Xian, Z. Akata, G. Sharma, Q. Nguyen, M. Hein, B. Schiele, Latent embeddings for zero-shot classification, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 69\u201377.","DOI":"10.1109\/CVPR.2016.15"},{"issue":"7","key":"10.1016\/j.knosys.2021.106773_b69","doi-asserted-by":"crossref","first-page":"1425","DOI":"10.1109\/TPAMI.2015.2487986","article-title":"Label-embedding for image classification","volume":"38","author":"Akata","year":"2015","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.knosys.2021.106773_b70","doi-asserted-by":"crossref","unstructured":"S. Changpinyo, W.-L. Chao, B. Gong, F. Sha, Synthesized classifiers for zero-shot learning, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 5327\u20135336.","DOI":"10.1109\/CVPR.2016.575"},{"key":"10.1016\/j.knosys.2021.106773_b71","doi-asserted-by":"crossref","unstructured":"S. Changpinyo, W.-L. Chao, F. Sha, Predicting visual exemplars of unseen classes for zero-shot learning, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 3476\u20133485.","DOI":"10.1109\/ICCV.2017.376"},{"key":"10.1016\/j.knosys.2021.106773_b72","series-title":"Joint European Conference on Machine Learning and Knowledge Discovery in Databases","first-page":"792","article-title":"A simple exponential family framework for zero-shot learning","author":"Verma","year":"2017"},{"key":"10.1016\/j.knosys.2021.106773_b73","doi-asserted-by":"crossref","unstructured":"H. Zhang, P. Koniusz, Zero-shot kernel learning, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7670\u20137679.","DOI":"10.1109\/CVPR.2018.00800"},{"key":"10.1016\/j.knosys.2021.106773_b74","doi-asserted-by":"crossref","unstructured":"Y. Liu, Q. Gao, J. Li, J. Han, L. Shao, Zero shot learning via low-rank embedded semantic autoencoder, in: International Joint Conferences on Artificial Intelligence, 2018, pp. 2490\u20132496.","DOI":"10.24963\/ijcai.2018\/345"},{"issue":"1","key":"10.1016\/j.knosys.2021.106773_b75","doi-asserted-by":"crossref","first-page":"506","DOI":"10.1109\/TIP.2018.2869696","article-title":"Triple verification network for generalized zero-shot learning","volume":"28","author":"Zhang","year":"2019","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.knosys.2021.106773_b76","doi-asserted-by":"crossref","unstructured":"Y. Liu, D.-Y. Xie, Q. Gao, J. Han, S. Wang, X. Gao, Graph and autoencoder based feature extraction for zero-shot learning, in: International Joint Conferences on Artificial Intelligence, pp. 3038\u20133044.","DOI":"10.24963\/ijcai.2019\/421"},{"key":"10.1016\/j.knosys.2021.106773_b77","doi-asserted-by":"crossref","unstructured":"Y. Liu, J. Li, X. Gao, A simple discriminative dual semantic auto-encoder for zero-shot classification, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020, pp. 940\u2013941.","DOI":"10.1109\/CVPRW50498.2020.00478"},{"key":"10.1016\/j.knosys.2021.106773_b78","doi-asserted-by":"crossref","unstructured":"O. Gune, M. Vora, B. Banerjee, S. Chaudhuri, Zero-shot learning using graph regularized latent discriminative cross-domain triplets, in: Proceedings of the 11th Indian Conference on Computer Vision, Graphics and Image Processing, 2018, pp. 1\u20139.","DOI":"10.1145\/3293353.3293358"},{"issue":"Nov","key":"10.1016\/j.knosys.2021.106773_b79","first-page":"2579","article-title":"Visualizing data using t-SNE","volume":"9","author":"Maaten","year":"2008","journal-title":"J. Mach. Learn. Res."}],"container-title":["Knowledge-Based Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0950705121000368?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0950705121000368?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,8,22]],"date-time":"2024-08-22T11:39:21Z","timestamp":1724326761000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0950705121000368"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,3]]},"references-count":79,"alternative-id":["S0950705121000368"],"URL":"https:\/\/doi.org\/10.1016\/j.knosys.2021.106773","relation":{},"ISSN":["0950-7051"],"issn-type":[{"type":"print","value":"0950-7051"}],"subject":[],"published":{"date-parts":[[2021,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Joint Visual and Semantic Optimization for zero-shot learning","name":"articletitle","label":"Article Title"},{"value":"Knowledge-Based Systems","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.knosys.2021.106773","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"106773"}}