{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,9]],"date-time":"2024-07-09T07:22:13Z","timestamp":1720509733349},"reference-count":46,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,3,1]],"date-time":"2020-03-01T00:00:00Z","timestamp":1583020800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61603343"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61703372"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004543","name":"China Scholarship Council","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100004543","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Knowledge-Based Systems"],"published-print":{"date-parts":[[2020,3]]},"DOI":"10.1016\/j.knosys.2019.105257","type":"journal-article","created":{"date-parts":[[2019,11,25]],"date-time":"2019-11-25T16:33:57Z","timestamp":1574699637000},"page":"105257","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":9,"special_numbering":"C","title":["Optimizing Deep Belief Echo State Network with a Sensitivity Analysis Input Scaling Auto-Encoder algorithm"],"prefix":"10.1016","volume":"191","author":[{"given":"Heshan","family":"Wang","sequence":"first","affiliation":[]},{"given":"Q.M. Jonathan","family":"Wu","sequence":"additional","affiliation":[]},{"given":"Jianbin","family":"Xin","sequence":"additional","affiliation":[]},{"given":"Jie","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Heng","family":"Zhang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.knosys.2019.105257_b1","doi-asserted-by":"crossref","first-page":"263","DOI":"10.1016\/j.neucom.2018.11.068","article-title":"Adaptive neural network force tracking impedance control for uncertain robotic manipulator based on nonlinear velocity observer","volume":"331","author":"Yang","year":"2019","journal-title":"Neurocomputing"},{"key":"10.1016\/j.knosys.2019.105257_b2","doi-asserted-by":"crossref","DOI":"10.1155\/2019\/1406534","article-title":"Position\/force tracking impedance control for robotic systems with uncertainties based on adaptive Jacobian and neural network","author":"Peng","year":"2019","journal-title":"Complexity"},{"key":"10.1016\/j.knosys.2019.105257_b3","doi-asserted-by":"crossref","first-page":"42","DOI":"10.1016\/j.knosys.2016.06.009","article-title":"Aspect extraction for opinion mining with a deep convolutional neural network","volume":"108","author":"Poria","year":"2016","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.knosys.2019.105257_b4","doi-asserted-by":"crossref","first-page":"140","DOI":"10.1016\/j.knosys.2017.09.013","article-title":"Research and application of quantum-inspired double parallel feed-forward neural network","volume":"136","author":"Ma","year":"2017","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.knosys.2019.105257_b5","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1016\/j.knosys.2018.03.025","article-title":"On the predictive analysis of behavioral massive job data using embedded clustering and deep recurrent neural networks","volume":"151","author":"Benabderrahmane","year":"2018","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.knosys.2019.105257_b6","doi-asserted-by":"crossref","first-page":"3123","DOI":"10.1109\/TNNLS.2015.2404823","article-title":"Competition and collaboration in cooperative coevolution of Elman recurrent neural networks for time-series prediction","volume":"26","author":"Chandra","year":"2015","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.knosys.2019.105257_b7","doi-asserted-by":"crossref","first-page":"157","DOI":"10.1109\/72.279181","article-title":"Learning long-term dependencies with gradient descent is difficult","volume":"5","author":"Bengio","year":"1994","journal-title":"IEEE Trans. Neural Netw."},{"key":"10.1016\/j.knosys.2019.105257_b8","doi-asserted-by":"crossref","first-page":"1735","DOI":"10.1162\/neco.1997.9.8.1735","article-title":"Long short-term memory","volume":"9","author":"Hochreiter","year":"1997","journal-title":"Neural Comput."},{"key":"10.1016\/j.knosys.2019.105257_b9","doi-asserted-by":"crossref","first-page":"78","DOI":"10.1126\/science.1091277","article-title":"Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication","volume":"304","author":"Jaeger","year":"2004","journal-title":"Science"},{"key":"10.1016\/j.knosys.2019.105257_b10","series-title":"The \u201cEcho State\u201d Approach to Analysing and Training Recurrent Neural Networks, Technology GMD Technical Report 148","author":"Jaeger","year":"2001"},{"key":"10.1016\/j.knosys.2019.105257_b11","series-title":"Long Short-Term Memory in Echo State Networks: Details of a Simulation Study","author":"Jaeger","year":"2012"},{"key":"10.1016\/j.knosys.2019.105257_b12","doi-asserted-by":"crossref","first-page":"1550","DOI":"10.1109\/5.58337","article-title":"Backpropagation through time: what it does and how to do it","volume":"78","author":"Werbos","year":"1990","journal-title":"Proc. IEEE"},{"key":"10.1016\/j.knosys.2019.105257_b13","doi-asserted-by":"crossref","first-page":"35","DOI":"10.1016\/j.knosys.2012.04.019","article-title":"Control of discrete chaotic systems based on echo state network modeling with an adaptive noise canceler","volume":"35","author":"Li","year":"2012","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.knosys.2019.105257_b14","doi-asserted-by":"crossref","first-page":"237","DOI":"10.1016\/j.eswa.2015.08.055","article-title":"An effective multivariate time series classification approach using echo state network and aptive differential evolution algorithm","volume":"43","author":"Wang","year":"2016","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.knosys.2019.105257_b15","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.ins.2016.08.081","article-title":"Functional echo state network for time series classification","volume":"373","author":"Ma","year":"2016","journal-title":"Inform. Sci."},{"key":"10.1016\/j.knosys.2019.105257_b16","doi-asserted-by":"crossref","first-page":"353","DOI":"10.1016\/j.neucom.2014.05.024","article-title":"Improved simple deterministically constructed cycle reservoir network with sensitive iterative pruning algorithm","volume":"145","author":"Wang","year":"2014","journal-title":"Neurocomputing"},{"key":"10.1016\/j.knosys.2019.105257_b17","doi-asserted-by":"crossref","first-page":"359","DOI":"10.1109\/TNN.2006.885113","article-title":"Support vector echo-state machine for chaotic time-series prediction","volume":"18","author":"Shi","year":"2007","journal-title":"IEEE Trans. Neural Netw."},{"key":"10.1016\/j.knosys.2019.105257_b18","doi-asserted-by":"crossref","first-page":"4","DOI":"10.1016\/j.patrec.2014.10.015","article-title":"Emotion recognition from speech signals via a probabilistic echo-state network","volume":"66","author":"Trentin","year":"2015","journal-title":"Pattern Recognit. Lett."},{"issue":"3","key":"10.1016\/j.knosys.2019.105257_b19","doi-asserted-by":"crossref","first-page":"414","DOI":"10.1016\/j.neunet.2007.04.006","article-title":"Automatic speech recognition using a predictive echo state network classifier","volume":"20","author":"Skowronski","year":"2007","journal-title":"Neural Netw."},{"issue":"1","key":"10.1016\/j.knosys.2019.105257_b20","doi-asserted-by":"crossref","first-page":"74","DOI":"10.1109\/TNN.2010.2085444","article-title":"An augmented echo state network for nonlinear adaptive filtering of complex noncircular signals","volume":"22","author":"Xia","year":"2011","journal-title":"IEEE Trans. Neural Netw."},{"issue":"16","key":"10.1016\/j.knosys.2019.105257_b21","doi-asserted-by":"crossref","first-page":"6789","DOI":"10.1021\/ie500296f","article-title":"Reservoir computing with sensitivity analysis input scaling regulation and redundant unit pruning for modeling fed-batch bioprocesses","volume":"53","author":"Wang","year":"2014","journal-title":"Ind. Eng. Chem. Res."},{"issue":"5786","key":"10.1016\/j.knosys.2019.105257_b22","doi-asserted-by":"crossref","first-page":"504","DOI":"10.1126\/science.1127647","article-title":"Reducing the dimensionality of data with neural networks","volume":"313","author":"Hinton","year":"2006","journal-title":"Science"},{"key":"10.1016\/j.knosys.2019.105257_b23","doi-asserted-by":"crossref","first-page":"2381","DOI":"10.1109\/JSTARS.2015.2388577","article-title":"Spectral\u2013spatial classification of hyperspectral data based on deep belief network","volume":"8","author":"Chen","year":"2015","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"10.1016\/j.knosys.2019.105257_b24","doi-asserted-by":"crossref","first-page":"972","DOI":"10.1016\/j.knosys.2018.10.025","article-title":"Parallel computing method of deep belief networks and its application to traffic flow prediction","volume":"163","author":"Zhao","year":"2019","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.knosys.2019.105257_b25","doi-asserted-by":"crossref","first-page":"39","DOI":"10.1016\/j.knosys.2017.03.027","article-title":"Red tide time series forecasting by combining ARIMA and deep belief network","volume":"125","author":"Qin","year":"2017","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.knosys.2019.105257_b26","doi-asserted-by":"crossref","first-page":"17","DOI":"10.1016\/j.knosys.2017.05.022","article-title":"Deep belief echo-state network and its application to time series prediction","volume":"130","author":"Sun","year":"2017","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.knosys.2019.105257_b27","series-title":"IEEE International Conference on Acoustics, Speech and Signal Processing","first-page":"6844","article-title":"Sequence classification using the high-level features extracted from deep neural networks","author":"Deng","year":"2014"},{"key":"10.1016\/j.knosys.2019.105257_b28","doi-asserted-by":"crossref","first-page":"71","DOI":"10.1016\/j.knosys.2017.04.011","article-title":"Improving performance of tensor-based context-aware recommenders using bias tensor factorization with context feature auto-encoding","volume":"128","author":"Wu","year":"2017","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.knosys.2019.105257_b29","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.knosys.2017.10.024","article-title":"Intelligent fault diagnosis of rolling bearing using deep wavelet auto-encoder with extreme learning machine","volume":"140","author":"Haidong","year":"2018","journal-title":"Knowl.-Based Syst."},{"issue":"1","key":"10.1016\/j.knosys.2019.105257_b30","doi-asserted-by":"crossref","DOI":"10.1142\/S0129065714500348","article-title":"Learning feature representations with a cost-relevant sparse autoencoder","volume":"25","author":"L\u00e4ngkvist","year":"2015","journal-title":"Int. J. Neural Syst."},{"key":"10.1016\/j.knosys.2019.105257_b31","series-title":"Neural Information Processing Systems Conference","first-page":"899","article-title":"Generalized denoising auto-encoders as generative models","author":"Bengio","year":"2013"},{"key":"10.1016\/j.knosys.2019.105257_b32","series-title":"Neural Information Processing Systems Conference","first-page":"3581","article-title":"Semi-supervised learning with deep generative models","author":"Kingma","year":"2014"},{"key":"10.1016\/j.knosys.2019.105257_b33","doi-asserted-by":"crossref","first-page":"171","DOI":"10.1016\/j.measurement.2016.04.007","article-title":"A sparse auto-encoder-based deep neural network approach for induction motor faults classification","volume":"89","author":"Sun","year":"2016","journal-title":"Measurement"},{"key":"10.1016\/j.knosys.2019.105257_b34","doi-asserted-by":"crossref","first-page":"988","DOI":"10.1016\/j.neucom.2015.10.035","article-title":"An efficient and effective convolutional auto-encoder extreme learning machine network for 3d feature learning","volume":"174","author":"Wang","year":"2016","journal-title":"Neurocomputing"},{"key":"10.1016\/j.knosys.2019.105257_b35","series-title":"IEEE International Conference on Speech and Signal Processing","first-page":"3377","article-title":"Extracting deep bottleneck features using stacked auto-encoders","author":"Gehring","year":"2013"},{"issue":"7","key":"10.1016\/j.knosys.2019.105257_b36","doi-asserted-by":"crossref","first-page":"92","DOI":"10.2352\/ISSN.2470-1173.2017.7.MWSF-330","article-title":"Autoencoder with recurrent neural networks for video forgery detection","author":"D\u2019Avino","year":"2017","journal-title":"Electron. Imaging"},{"key":"10.1016\/j.knosys.2019.105257_b37","series-title":"Neural Information Processing Systems Conference","first-page":"3572","article-title":"Pre-training of recurrent neural networks via linear autoencoders","author":"Pasa","year":"2014"},{"key":"10.1016\/j.knosys.2019.105257_b38","series-title":"Genesis of basic and multi-layer echo state network recurrent autoencoders for efficient data representations","author":"Chouikhi","year":"2018"},{"issue":"8","key":"10.1016\/j.knosys.2019.105257_b39","doi-asserted-by":"crossref","first-page":"1711","DOI":"10.1162\/089976602760128018","article-title":"Training products of experts by minimizing contrastive divergence","volume":"14","author":"Hinton","year":"2002","journal-title":"Neural Comput."},{"key":"10.1016\/j.knosys.2019.105257_b40","series-title":"Neural Networks for Perception","first-page":"65","article-title":"Theory of the backpropagation neural network","author":"Hecht-Nielsen","year":"1992"},{"key":"10.1016\/j.knosys.2019.105257_b41","first-page":"112","article-title":"On sensitivity estimation for nonlinear mathematical models","volume":"2","author":"Sobol\u2019","year":"1990","journal-title":"Mat. Model."},{"key":"10.1016\/j.knosys.2019.105257_b42","doi-asserted-by":"crossref","first-page":"182","DOI":"10.1016\/j.knosys.2015.06.003","article-title":"Optimizing the echo state network with a binary particle swarm optimization algorithm","volume":"86","author":"Wang","year":"2015","journal-title":"Knowl.-Based Syst."},{"issue":"1","key":"10.1016\/j.knosys.2019.105257_b43","doi-asserted-by":"crossref","first-page":"135","DOI":"10.1016\/S0016-0032(96)00059-2","article-title":"Nonlinear identification and control of a heat exchanger: a neural network approach","volume":"334","author":"Bittanti","year":"1997","journal-title":"J. Franklin Inst. B"},{"issue":"9","key":"10.1016\/j.knosys.2019.105257_b44","doi-asserted-by":"crossref","first-page":"1671","DOI":"10.1016\/S0017-9310(00)00228-3","article-title":"Dynamic prediction and control of heat exchangers using artificial neural networks","volume":"44","author":"D\u0131az","year":"2001","journal-title":"Int. J. Heat Mass Transfer"},{"key":"10.1016\/j.knosys.2019.105257_b45","doi-asserted-by":"crossref","first-page":"287","DOI":"10.1126\/science.267326","article-title":"Oscillation and chaos in physiological control systems","volume":"197","author":"Mackey","year":"1977","journal-title":"Science"},{"key":"10.1016\/j.knosys.2019.105257_b46","doi-asserted-by":"crossref","first-page":"179","DOI":"10.1207\/s15516709cog1402_1","article-title":"Finding structure in time","volume":"14","author":"Elman","year":"1990","journal-title":"Cognitive science"}],"container-title":["Knowledge-Based Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0950705119305660?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0950705119305660?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2020,2,8]],"date-time":"2020-02-08T08:28:54Z","timestamp":1581150534000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0950705119305660"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,3]]},"references-count":46,"alternative-id":["S0950705119305660"],"URL":"https:\/\/doi.org\/10.1016\/j.knosys.2019.105257","relation":{},"ISSN":["0950-7051"],"issn-type":[{"value":"0950-7051","type":"print"}],"subject":[],"published":{"date-parts":[[2020,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Optimizing Deep Belief Echo State Network with a Sensitivity Analysis Input Scaling Auto-Encoder algorithm","name":"articletitle","label":"Article Title"},{"value":"Knowledge-Based Systems","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.knosys.2019.105257","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2019 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"105257"}}