{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T06:34:34Z","timestamp":1740119674522,"version":"3.37.3"},"reference-count":58,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2019,10,1]],"date-time":"2019-10-01T00:00:00Z","timestamp":1569888000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"name":"Major Program of National Social Science Foundation of China","award":["17ZDA093"]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Knowledge-Based Systems"],"published-print":{"date-parts":[[2019,10]]},"DOI":"10.1016\/j.knosys.2019.07.024","type":"journal-article","created":{"date-parts":[[2019,7,19]],"date-time":"2019-07-19T15:41:39Z","timestamp":1563550899000},"page":"104853","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":53,"special_numbering":"C","title":["Container throughput forecasting using a novel hybrid learning method with error correction strategy"],"prefix":"10.1016","volume":"182","author":[{"given":"Pei","family":"Du","sequence":"first","affiliation":[]},{"given":"Jianzhou","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Wendong","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Tong","family":"Niu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.knosys.2019.07.024_b1","doi-asserted-by":"crossref","DOI":"10.1016\/j.jtrangeo.2016.06.002","article-title":"The adaptive capacity of container ports in an era of mega vessels: The case of upstream seaports Antwerp and Hamburg","author":"Notteboom","year":"2016","journal-title":"J. Transp. Geogr."},{"key":"10.1016\/j.knosys.2019.07.024_b2","doi-asserted-by":"crossref","DOI":"10.1016\/j.jtrangeo.2016.03.005","article-title":"Modeling of container throughput in Northern Adriatic ports over the period 1990\u20132013","author":"Twrdy","year":"2016","journal-title":"J. Transp. Geogr."},{"key":"10.1016\/j.knosys.2019.07.024_b3","article-title":"A novel approach based on the Gauss-vSVR with a new hybrid evolutionary algorithm and input vector decision method for port throughput forecasting","author":"Li","year":"2017","journal-title":"Neural Comput. Appl."},{"key":"10.1016\/j.knosys.2019.07.024_b4","doi-asserted-by":"crossref","DOI":"10.1016\/j.tre.2017.08.015","article-title":"Data characteristic analysis and model selection for container throughput forecasting within a decomposition-ensemble methodology","author":"Xie","year":"2017","journal-title":"Transp. Res. E"},{"year":"2016","author":"Chen","series-title":"Port Cargo Throughput Forecasting Based on Combination Model","key":"10.1016\/j.knosys.2019.07.024_b5"},{"key":"10.1016\/j.knosys.2019.07.024_b6","doi-asserted-by":"crossref","DOI":"10.1016\/j.mcm.2009.05.027","article-title":"A comparison of univariate methods for forecasting container throughput volumes","author":"Peng","year":"2009","journal-title":"Math. Comput. Modelling"},{"key":"10.1016\/j.knosys.2019.07.024_b7","doi-asserted-by":"crossref","DOI":"10.1016\/j.asoc.2017.10.033","article-title":"GMDH-based hybrid model for container throughput forecasting: Selective combination forecasting in nonlinear subseries","author":"Mo","year":"2018","journal-title":"Appl. Soft Comput. J."},{"key":"10.1016\/j.knosys.2019.07.024_b8","doi-asserted-by":"crossref","DOI":"10.1016\/j.asoc.2018.07.022","article-title":"An improved grey model optimized by multi-objective ant lion optimization algorithm for annual electricity consumption forecasting","author":"Wang","year":"2018","journal-title":"Appl. Soft Comput. J."},{"key":"10.1016\/j.knosys.2019.07.024_b9","doi-asserted-by":"crossref","DOI":"10.1016\/j.energy.2019.04.096","article-title":"A novel fractional time delayed grey model with Grey Wolf Optimizer and its applications in forecasting the natural gas and coal consumption in Chongqing China","author":"Ma","year":"2019","journal-title":"Energy"},{"key":"10.1016\/j.knosys.2019.07.024_b10","doi-asserted-by":"crossref","DOI":"10.1016\/j.dss.2010.12.002","article-title":"A hybrid SARIMA wavelet transform method for sales forecasting","author":"Choi","year":"2011","journal-title":"Decis. Support Syst."},{"key":"10.1016\/j.knosys.2019.07.024_b11","article-title":"Research on a combined model based on linear and nonlinear features - A case study of wind speed forecasting","author":"Zhang","year":"2019","journal-title":"Renew. Energy"},{"key":"10.1016\/j.knosys.2019.07.024_b12","doi-asserted-by":"crossref","DOI":"10.1007\/s11424-014-3296-1","article-title":"A transfer forecasting model for container throughput guided by discrete PSO","author":"Xiao","year":"2014","journal-title":"J. Syst. Sci. Complex."},{"key":"10.1016\/j.knosys.2019.07.024_b13","doi-asserted-by":"crossref","DOI":"10.1016\/j.epsr.2017.01.035","article-title":"Short-term electric load forecasting based on singular spectrum analysis and support vector machine optimized by Cuckoo search algorithm","author":"Zhang","year":"2017","journal-title":"Electr. Power Syst. Res."},{"key":"10.1016\/j.knosys.2019.07.024_b14","doi-asserted-by":"crossref","DOI":"10.1016\/j.atmosenv.2016.10.046","article-title":"Air quality early-warning system for cities in China","author":"Xu","year":"2017","journal-title":"Atmos. Environ."},{"key":"10.1016\/j.knosys.2019.07.024_b15","doi-asserted-by":"crossref","DOI":"10.1016\/j.engappai.2017.07.007","article-title":"A hybrid ETS\u2013ANN model for time series forecasting","author":"Panigrahi","year":"2017","journal-title":"Eng. Appl. Artif. Intell."},{"key":"10.1016\/j.knosys.2019.07.024_b16","doi-asserted-by":"crossref","DOI":"10.1016\/j.renene.2018.01.113","article-title":"Multi-step ahead forecasting in electrical power system using a hybrid forecasting system","author":"Du","year":"2018","journal-title":"Renew. Energy"},{"key":"10.1016\/j.knosys.2019.07.024_b17","doi-asserted-by":"crossref","DOI":"10.1016\/j.apenergy.2017.10.031","article-title":"A novel hybrid system based on a new proposed algorithm\u2014multi-objective whale optimization algorithm for wind speed forecasting","author":"Wang","year":"2017","journal-title":"Appl. Energy"},{"key":"10.1016\/j.knosys.2019.07.024_b18","doi-asserted-by":"crossref","DOI":"10.1016\/j.apenergy.2017.04.008","article-title":"A new dynamic integrated approach for wind speed forecasting","author":"Sun","year":"2017","journal-title":"Appl. Energy"},{"key":"10.1016\/j.knosys.2019.07.024_b19","doi-asserted-by":"crossref","DOI":"10.1016\/j.apenergy.2018.09.012","article-title":"A novel wind speed forecasting system based on hybrid data preprocessing and multi-objective optimization","author":"Tian","year":"2018","journal-title":"Appl. Energy"},{"key":"10.1016\/j.knosys.2019.07.024_b20","doi-asserted-by":"crossref","DOI":"10.1016\/j.apenergy.2019.03.097","article-title":"A combined model based on data preprocessing strategy and multi-objective optimization algorithm for short-term wind speed forecasting","author":"Niu","year":"2019","journal-title":"Appl. Energy"},{"key":"10.1016\/j.knosys.2019.07.024_b21","article-title":"Hybrid forecasting system based on an optimal model selection strategy for different wind speed forecasting problems","author":"Zhou","year":"2019","journal-title":"Appl. Energy"},{"key":"10.1016\/j.knosys.2019.07.024_b22","article-title":"A dynamic evaluation framework for ambient air pollution monitoring","author":"Li","year":"2019","journal-title":"Appl. Math. Model."},{"key":"10.1016\/j.knosys.2019.07.024_b23","doi-asserted-by":"crossref","DOI":"10.1016\/j.asoc.2018.09.005","article-title":"The study and application of a novel hybrid system for air quality early-warning","author":"Hao","year":"2019","journal-title":"Appl. Soft Comput. J."},{"key":"10.1016\/j.knosys.2019.07.024_b24","doi-asserted-by":"crossref","DOI":"10.1016\/j.envpol.2017.01.043","article-title":"Research and application of a hybrid model based on dynamic fuzzy synthetic evaluation for establishing air quality forecasting and early warning system: A case study in China","author":"Xu","year":"2017","journal-title":"Environ. Pollut."},{"key":"10.1016\/j.knosys.2019.07.024_b25","doi-asserted-by":"crossref","DOI":"10.1016\/j.energy.2016.11.034","article-title":"A hybrid forecasting model based on date-framework strategy and improved feature selection technology for short-term load forecasting","author":"Jiang","year":"2017","journal-title":"Energy"},{"key":"10.1016\/j.knosys.2019.07.024_b26","doi-asserted-by":"crossref","DOI":"10.1016\/j.asoc.2019.105548","article-title":"A novel combined model based on hybrid optimization algorithm for electrical load forecasting","author":"Wang","year":"2019","journal-title":"Appl. Soft Comput. J."},{"doi-asserted-by":"crossref","unstructured":"J. Geng, M.W. Li, W.C. Hong, T.J. Zheng, X.Y. Niu, S.L. Ma, Port throughput forecasting by using PPPR with chaotic efficient genetic algorithms and CMA, in: Proceedings - 2015 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2015, 2016. http:\/\/dx.doi.org\/10.1109\/SMC.2015.288.","key":"10.1016\/j.knosys.2019.07.024_b27","DOI":"10.1109\/SMC.2015.288"},{"key":"10.1016\/j.knosys.2019.07.024_b28","article-title":"Forecasting container throughput of Qingdao port with a hybrid model","author":"Huang","year":"2014","journal-title":"J. Syst. Sci. Complex."},{"key":"10.1016\/j.knosys.2019.07.024_b29","doi-asserted-by":"crossref","DOI":"10.1016\/j.asoc.2013.02.002","article-title":"Hybrid approaches based on LSSVR model for container throughput forecasting: A comparative study","author":"Xie","year":"2013","journal-title":"Appl. Soft Comput. J."},{"key":"10.1016\/j.knosys.2019.07.024_b30","doi-asserted-by":"crossref","DOI":"10.1016\/j.atmosenv.2016.03.056","article-title":"A novel hybrid decomposition-and-ensemble model based on CEEMD and GWO for short-term PM2.5 concentration forecasting","author":"Niu","year":"2016","journal-title":"Atmos. Environ."},{"key":"10.1016\/j.knosys.2019.07.024_b31","article-title":"Research and application of a combined model based on variable weight for short term wind speed forecasting","author":"Li","year":"2018","journal-title":"Renew. Energy"},{"key":"10.1016\/j.knosys.2019.07.024_b32","doi-asserted-by":"crossref","DOI":"10.1016\/j.asoc.2015.09.001","article-title":"Error correction method based on data transformational GM(1, 1) and application on tax forecasting","author":"Yu","year":"2015","journal-title":"Appl. Soft Comput. J."},{"key":"10.1016\/j.knosys.2019.07.024_b33","doi-asserted-by":"crossref","DOI":"10.1080\/00036840802260932","article-title":"Forecasting container transshipment in Germany","author":"Schulzea","year":"2009","journal-title":"Appl. Econ."},{"key":"10.1016\/j.knosys.2019.07.024_b34","article-title":"Application of Grey\u2013Markov model in predicting container throughput of Fujian province","author":"Chen","year":"2013","journal-title":"Adv. Mater. Res."},{"key":"10.1016\/j.knosys.2019.07.024_b35","doi-asserted-by":"crossref","DOI":"10.1061\/(ASCE)0733-9488(2004)130:4(195)","article-title":"Forecasting cargo throughput for the port of Hong Kong: Error correction model approach","author":"Hui","year":"2004","journal-title":"J. Urban Plann. Dev."},{"key":"10.1016\/j.knosys.2019.07.024_b36","doi-asserted-by":"crossref","DOI":"10.1016\/j.mcm.2007.05.005","article-title":"A modified regression model for forecasting the volumes of Taiwan\u2019s import containers","author":"Chou","year":"2008","journal-title":"Math. Comput. Modelling"},{"key":"10.1016\/j.knosys.2019.07.024_b37","doi-asserted-by":"crossref","DOI":"10.1061\/(ASCE)0733-9488(2004)130:3(133)","article-title":"Forecasts and reliability analysis of port cargo throughput in Hong Kong","author":"Lam","year":"2004","journal-title":"J. Urban Plan. Dev."},{"key":"10.1016\/j.knosys.2019.07.024_b38","article-title":"Forecasting Hong Kong\u2019s container throughput with approximate least squares support vector machines","volume":"vol. 1","author":"Mak","year":"2007"},{"key":"10.1016\/j.knosys.2019.07.024_b39","article-title":"Forecasting container throughputs at ports using genetic programming","author":"Chen","year":"2010","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.knosys.2019.07.024_b40","doi-asserted-by":"crossref","DOI":"10.4018\/jkss.2012040105","article-title":"A hybrid forecasting model for non-stationary time series: An application to container throughput prediction","author":"Xiao","year":"2012","journal-title":"Int. J. Knowl. Syst. Sci."},{"doi-asserted-by":"crossref","unstructured":"P. Zhang, Y. Cui, Research on combination forecast of port container throughput based on Elman neural network, in: 2011 IEEE 3rd International Conference on Communication Software and Networks, ICCSN 2011, 2011. http:\/\/dx.doi.org\/10.1109\/ICCSN.2011.6014634.","key":"10.1016\/j.knosys.2019.07.024_b41","DOI":"10.1109\/ICCSN.2011.6014634"},{"key":"10.1016\/j.knosys.2019.07.024_b42","doi-asserted-by":"crossref","DOI":"10.1016\/j.sbspro.2013.08.133","article-title":"Multivariant forecasting mode of guangdong province port throughput with genetic algorithms and back propagation neural network","author":"Ping","year":"2013","journal-title":"Procedia - Soc. Behav. Sci."},{"key":"10.1016\/j.knosys.2019.07.024_b43","doi-asserted-by":"crossref","DOI":"10.1016\/j.apm.2018.01.014","article-title":"A novel hybrid decomposition-ensemble model based on VMD and HGWO for container throughput forecasting","author":"Niu","year":"2018","journal-title":"Appl. Math. Model."},{"key":"10.1016\/j.knosys.2019.07.024_b44","doi-asserted-by":"crossref","DOI":"10.1109\/TSP.2013.2288675","article-title":"Variational mode decomposition","author":"Dragomiretskiy","year":"2014","journal-title":"IEEE Trans. Signal Process."},{"key":"10.1016\/j.knosys.2019.07.024_b45","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2016.02.025","article-title":"A variational mode decompoisition approach for analysis and forecasting of economic and financial time series","author":"Lahmiri","year":"2016","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.knosys.2019.07.024_b46","doi-asserted-by":"crossref","DOI":"10.1007\/s00500-018-3102-4","article-title":"Butterfly optimization algorithm: a novel approach for global optimization","author":"Arora","year":"2019","journal-title":"Soft Comput."},{"doi-asserted-by":"crossref","unstructured":"G. Bin\u00a0Huang, Q.Y. Zhu, C.K. Siew, Extreme learning machine: A new learning scheme of feedforward neural networks, in: IEEE International Conference on Neural Networks - Conference Proceedings, 2004. http:\/\/dx.doi.org\/10.1109\/IJCNN.2004.1380068.","key":"10.1016\/j.knosys.2019.07.024_b47","DOI":"10.1109\/IJCNN.2004.1380068"},{"key":"10.1016\/j.knosys.2019.07.024_b48","doi-asserted-by":"crossref","DOI":"10.1016\/j.tourman.2018.07.010","article-title":"Forecasting tourist arrivals with machine learning and internet search index","author":"Sun","year":"2019","journal-title":"Tour. Manag."},{"key":"10.1016\/j.knosys.2019.07.024_b49","doi-asserted-by":"crossref","DOI":"10.1016\/j.asoc.2019.03.035","article-title":"A novel hybrid model for short-term wind power forecasting","author":"Du","year":"2019","journal-title":"Appl. Soft Comput. J."},{"key":"10.1016\/j.knosys.2019.07.024_b50","article-title":"Electricity price forecasting by a hybrid model, combining wavelet transform, ARMA and kernel-based extreme learning machine methods","author":"Yang","year":"2017","journal-title":"Appl. Energy"},{"key":"10.1016\/j.knosys.2019.07.024_b51","doi-asserted-by":"crossref","DOI":"10.1016\/j.apenergy.2019.01.063","article-title":"A novel two-stage forecasting model based on error factor and ensemble method for multi-step wind power forecasting","author":"Hao","year":"2019","journal-title":"Appl. Energy"},{"key":"10.1016\/j.knosys.2019.07.024_b52","article-title":"Comparing predictive accuracy","author":"Diebold","year":"1995","journal-title":"J. Bus. Econom. Statist."},{"unstructured":"http:\/\/www.worldshipping.org\/about-the-industry\/global-trade\/top-50-world-container-ports.","key":"10.1016\/j.knosys.2019.07.024_b53"},{"key":"10.1016\/j.knosys.2019.07.024_b54","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2016.02.025","article-title":"A variational mode decompoisition approach for analysis and forecasting of economic and financial time series","author":"Lahmiri","year":"2016","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.knosys.2019.07.024_b55","doi-asserted-by":"crossref","DOI":"10.1016\/j.renene.2017.06.095","article-title":"Multi-step ahead wind speed forecasting using an improved wavelet neural network combining variational mode decomposition and phase space reconstruction","author":"Wang","year":"2017","journal-title":"Renew. Energy"},{"key":"10.1016\/j.knosys.2019.07.024_b56","article-title":"On the kernel extreme learning machine classifier","author":"Iosifidis","year":"2015","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.knosys.2019.07.024_b57","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2015.12.022","article-title":"SCA: A sine cosine algorithm for solving optimization problems","author":"Mirjalili","year":"2016","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.knosys.2019.07.024_b58","doi-asserted-by":"crossref","DOI":"10.1016\/j.advengsoft.2015.01.010","article-title":"The ant lion optimizer","author":"Mirjalili","year":"2015","journal-title":"Adv. Eng. Softw."}],"container-title":["Knowledge-Based Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0950705119303284?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0950705119303284?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,9,18]],"date-time":"2023-09-18T11:54:53Z","timestamp":1695038093000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0950705119303284"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,10]]},"references-count":58,"alternative-id":["S0950705119303284"],"URL":"https:\/\/doi.org\/10.1016\/j.knosys.2019.07.024","relation":{},"ISSN":["0950-7051"],"issn-type":[{"type":"print","value":"0950-7051"}],"subject":[],"published":{"date-parts":[[2019,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Container throughput forecasting using a novel hybrid learning method with error correction strategy","name":"articletitle","label":"Article Title"},{"value":"Knowledge-Based Systems","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.knosys.2019.07.024","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2019 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"104853"}}